272
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Possible Involvement of Calcium Signaling Pathways in L-Leucine-Stimulated Protein Synthesis in L6 Myotubes

, &
Pages 1533-1536 | Received 13 Feb 2006, Accepted 07 Apr 2006, Published online: 22 May 2014

  • 1) May, M. E., and Buse, M. G., Effects of branched amino acids on protein turnover. Diabetes Metab. Rev., 5, 227–245 (1989).
  • 2) Louard, R. J., Barrett, E. J., and Gelfand, R. A., Overnight branched amino acid infusion causes substantial suppression of muscle proteolysis. Metabolism, 44, 424–429 (1995).
  • 3) Tischler, M. E., Desautels, M., and Goldberg, A. L., Does leucine, leuciyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem., 257, 1613–1621 (1982).
  • 4) Yagasaki, K., Morisaki-Tsuji, N., Miura, A., and Funabiki, R., Possible involvement of phospholipase C and protein kinase C in stimulatory actions of L-leucine and its keto acid, α-ketoisocaproic acid, on protein synthesis in RLC-16 hepatocytes. Cytotechnology, 40, 151–154 (2002).
  • 5) Yagasaki, K., Morisaki, N., Kitahara, Y., Miura, A., and Funabiki, R., Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in L6 myotubes. Cytotechnology, 43, 97–103 (2003).
  • 6) Yagasaki, K., Hatano, N., Fujii, M., Miura, Y., and Funabiki, R., Possible involvement of phospholipase A2 and cyclooxygenase in stimulatory action of L-histidine on protein synthesis in L6 myotubes. Cytotechnology, 40, 155–160 (2002).
  • 7) Proud, C. G., Wang, X., Patel, J. V., Campbell, L. E., Kleijn, M., Li, W., and Browne, G. J., Interplay between insulin and nutrients in the regulation of translation factors. Biochem. Soc. Transac., 29, 541–547 (2001).
  • 8) Welsh, G. I., Miler, C. M., Loughlin, A. J., Price, N. T., and Proud, C. G., Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett., 421, 125–130 (1998).
  • 9) Brostrom, M. A., and Brostrom, C. O., Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium, 34, 345–363 (2003).
  • 10) Miyamoto, S., Patel, P., and Hershey, J. W. B., Changes in ribosomal binding activity of eIF3 correlate with increased translation rates during activation of T lymphocytes. J. Biol. Chem., 280, 28251–28264 (2005).
  • 11) Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R., and Olson, E. N., A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93, 215–228 (1998).
  • 12) Yaffe, D., Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA, 61, 477–483 (1968).
  • 13) Yagasaki, K., Saito, K., Yamaguchi, M., and Funabiki, R., Involvement of arachidonic acid metabolism in insulin-stimulated protein synthesis in cultured L6 myocytes. Agric. Biol. Chem., 55, 1449–1453 (1991).
  • 14) Endo, M., Calcium release from sarcoplasmic reticulum. Curr. Topics Membr. Transport, 25, 181–230 (1985).
  • 15) Fleischer, S., and Inui, M., Regulation of muscle contraction and relaxation in heart. Prog. Clin. Biol. Res., 273, 435–450 (1988).
  • 16) Ehrlich, B. E., Kaftan, E., Bezprozvannaya, S., and Bezprozvanny, I., The pharmacology of intracellular Ca2+-release channels. Trends Pharmacol. Sci., 15, 145–149 (1994).
  • 17) Crabtree, G. R., Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell, 96, 611–614 (1999).
  • 18) Bers, D. M., and Guo, T., Calcium signaling in cardiac ventricular myocytes. Ann. NY Acad. Sci., 1047, 86–98 (2005).
  • 19) Redpath, N. T., Foulstone, E. J., and Proud, C. G., Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J., 15, 2291–2297 (1996).
  • 20) Conus, N. M., Hemmings, B. A., and Pearson, R. B., Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. J. Biol. Chem., 273, 4776–4782 (1998).
  • 21) Rybkin, I. I., Cross, M. E., McReynolds, E. M., Lin, R. Z., and Ballou, L. M., α1A adrenergic receptor induces eukaryotic initiation factor 4E-binding protein 1 phosphorylation via a Ca2+-dependent pathway independent of phosphatidylinositol 3-kinase/Akt. J. Biol. Chem., 275, 5460–5465 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.