546
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Fluorescence Resonance Energy Transfer-Based Assay for DNA-Binding Protein Tagged by Green Fluorescent Protein

, , , , &
Pages 1921-1927 | Received 13 Feb 2006, Accepted 23 Mar 2006, Published online: 22 May 2014

  • 1) Terenzi, H., Petropoulos, I., Ellouze, C., Takahashi, M., and Zakin, M. M., Interaction of DNA binding domain of HNF-3α with its transferrin enhancer DNA specific target site. FEBS Lett., 369, 277–282 (1995).
  • 2) Neylon, C., Brown, S. E., Kralicek, A. V., Miles, C. S., Love, C. A., and Dixon, N. E., Interaction of the Escherichia coli replication terminator protein (Tus) with DNA: a model derived from DNA-binding studies of mutant proteins by surface plasmon resonance. Biochemistry, 39, 11989–11999 (2000).
  • 3) Biswas, S., Katiyar, S., Li, G., Zhou, X., Lennarz, W. J., and Schindelin, H., The N-terminus of yeast peptide: N-glycanase interacts with the DNA repair protein Rad23. Biochem. Biophys. Res. Commun., 323, 149–155 (2004).
  • 4) Xu, H., Frank, J., Trier, U., Hammer, S., Schroder, W., Behlke, J., Schafer-Korting, M., Holzwarth, J. F., and Saenger, W., Interaction of fluorescence labeled single-stranded DNA with hexameric DNA-helicase RepA: a photon and fluorescence correlation spectroscopy study. Biochemistry, 40, 7211–7218 (2001).
  • 5) Vukojevic, V., Yakovleva, T., Terenius, L., Pramanik, A., and Bakalkin, G., Denaturation of dsDNA by p53: fluorescence correlation spectroscopy study. Biochem. Biophys. Res. Commun., 316, 1150–1155 (2004).
  • 6) Kobayashi, T., Okamoto, N., Sawasaki, T., and Endo, Y., Detection of protein–DNA interactions in crude cellular extracts by fluorescence correlation spectroscopy. Anal. Biochem., 332, 58–66 (2004).
  • 7) Wan, Q. H., and Le, X. C., Studies of protein–DNA interactions by capillary electrophoresis/laser-induced fluorescence polarization. Anal. Chem., 72, 5583–5589 (2000).
  • 8) Banik, U., Beechem, J. M., Klebanow, E., Schroeder, S., and Weil, P. A., Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J. Biol. Chem., 276, 49100–49109 (2001).
  • 9) Stuhmeier, F., Hillisch, A., Clegg, R. M., and Diekman, S., Fluorescence energy transfer analysis of DNA structures containing several bulges and their interaction with CAP. J. Mol. Biol., 302, 1081–1100 (2000).
  • 10) Katiliene, Z., Katilius, E., and Woodbury, N. W., Single molecule detection of DNA looping by NgoMIV restriction endonuclease. Biophys. J., 84, 4053–4061 (2003).
  • 11) Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C., Green fluorescent protein as a marker for gene expression. Science, 263, 802–805 (1994).
  • 12) Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y., Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci., 20, 448–455 (1995).
  • 13) Misteli, T., and Spector, D. L., Applications of the green fluorescent protein in cell biology and biotechnology. Nat. Biotechnol., 15, 961–964 (1997).
  • 14) Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388, 882–887 (1997).
  • 15) Ruehr, M. L., Zakhary, D. R., Damron, D. S., and Bond, M., Cyclic AMP-dependent protein kinase binding to A-kinase anchoring proteins in living cells by fluorescence resonance energy transfer of green fluorescent protein fusion proteins. J. Biol. Chem., 274, 33092–33096 (1999).
  • 16) Hailey, D. W., Davis, T. N., and Muller, E. G., Fluorescence resonance energy transfer using color variants of green fluorescent protein. Methods Enzymol., 351, 34–49 (2002).
  • 17) Arai, R., Ueda, H., Tsumoto, K., Mahoney, W. C., Kumagai, I., and Nagamune, T., Fluorolabeling of antibody variable domains with green fluorescent protein variants: application to an energy transfer-based homogeneous immunoassay. Protein Eng., 13, 369–376 (2000).
  • 18) Van Why, S. K., Mann, A. S., Ardito, T., Thulin, G., Ferris, S., Macleod, M. A., Kashgarian, M., and Siegel, N. J., Hsp27 associates with actin and limits injury in energy depleted renal epithelia. J. Am. Soc. Nephrol., 14, 98–106 (2003).
  • 19) Subramanian, A., and Miller, D. M., Structural analysis of α-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J. Biol. Chem., 275, 5958–5965 (2000).
  • 20) Feo, S., Arcuri, D., Piddini, E., Passantino, R., and Giallongo, A., ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett., 473, 47–52 (2000).
  • 21) Aoki, T., Tahara, T., Satoh, K., Fujino, H., and Watabe, H., General properties of GFP-display, an electrophoretic analysis for single amino acid changes in target polypeptides. Anal. Biochem., 317, 107–115 (2003).
  • 22) Aoki, T., Kimura, M., Kaneta, M., Kazama, H., Morikawa, J., and Watabe, H., Characterization of recombinant human neuron-specific enolase and its application to immunoassay system. Tumor Biol., 14, 261–270 (1993).
  • 23) Aoki, T., Miyashita, M., Fujino, H., and Watabe, H., A flexible single-step detection of blotted antigen using a fusion protein between protein A and green fluorescent protein. Biosci. Biotechnol. Biochem., 64, 1547–1551 (2000).
  • 24) Weiner, M. P., Costa, G. L., Schoettlin, W., Cline, J., Mathur, E., and Bauer, J. C., Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene, 151, 119–123 (1994).
  • 25) Sambrook, J., and Russell, D. W., In vitro mutagenesis using double-stranded DNA templates: selection of mutants with DpnI. In “Molecular Cloning,” eds. Sambrook, J., and Russell, D. W., Cold Spring Harbor Laboratory Press, New York, pp. 13.19–13.25 (2001).
  • 26) Chaudhary, D., and Miller, D. M., The c-myc promoter binding protein (MBP-1) and TBP bind simultaneously in the minor groove of the c-myc P2 promoter. Biochemistry, 34, 3438–3445 (1995).
  • 27) Chai, G., Brewer, J. M., Lovelace, L. L., Aoki, T., Minor, W., and Lebioda, L., Expression, purification and the 1.8 Å resolution crystal structure of human neuron specific enolase. J. Mol. Biol., 341, 1015–1021 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.