648
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Enzymatic Synthesis of L-Pipecolic Acid by Δ1-Piperideine-2-carboxylate Reductase from Pseudomonas putida

, , , , &
Pages 2296-2298 | Received 09 Mar 2006, Accepted 30 Apr 2006, Published online: 22 May 2014

  • 1) Tanaka, H., Kuroda, A., Marusawa, H., Hatanaka, H., Kino, T., Goto, T., and Hashimoto, M., Structure of FK506: a novel immunosuppressant isolated from Streptomyces. J. Am. Chem. Soc., 109, 5031–5033 (1987).
  • 2) Germann, U. A., Shlyakhter, D., Mason, V. S., Zelle, R. E., Duffy, J. P., Galullo, V., Armistead, D. M., Saunders, J. O., Boger, J., and Harding, M. W., Cellular and biochemical characterization of VX-710 as a chemosensitizer: reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs, 8, 125–140 (1997).
  • 3) Vezina, C., Kudelski, A., and Sehgal, S. N., Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiotics (Tokyo), 28, 721–726 (1975).
  • 4) Lehmann, J., Hutchison, A. J., McPherson, S. E., Mondadori, C., Schmutz, M., Sinton, C. M., Tsai, C., Murphy, D. E., Steel, D. J., Williams, M., Cheney, D. L., and Wood, P. L., CGS 19755, a selective and competitive N-methyl-D-aspartate-type excitatory amino acid receptor antagonist. J. Pharmacol. Exp. Ther., 246, 65–75 (1988).
  • 5) Boger, D. L., Chen, J. H., and Saionz, K. W., (−)-Sandramycin: total synthesis and characterization of DNA binding properties. J. Am. Chem. Soc., 118, 1629–1644 (1996).
  • 6) Hirota, A., Suzuki, A., Aizawa, K., and Tamura, S., Structure of Cyl-2, a novel cyclotetrapeptide from Cylindrocladium scoparium. Agric. Biol. Chem., 37, 955–956 (1973).
  • 7) Adger, B., Dyer, U., Hutton, G., and Woods, M., Stereospecific synthesis of the anaesthetic levobupivacaine. Tetrahedron Lett., 37, 6399–6402 (1996).
  • 8) Lamarre, D., Croteau, G., Wardrop, E., Bourgon, L., Thibeault, D., Clouette, C., Vaillancourt, M., Cohen, E., Pargellis, C., Yoakim, C., and Anderson, P. C., Antiviral properties of palinavir, a potent inhibitor of the human immunodeficiency virus type 1 protease. Antimicrob. Agents Chemother., 41, 965–971 (1997).
  • 9) Hasegawa, H., Watariya, T., Miura, G., and Hong, N., Japan Kokai Tokkyo Koho, 2000-178253 (June 27, 2000).
  • 10) Eichhorn, E., Roduit, J. P., Shaw, N., Heinzmann, K., and Kiener, A., Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells. Tetrahedron Asymmet., 8, 2533–2536 (1997).
  • 11) Fujii, T., and Miyoshi, M., Novel synthesis of L-pipecolic acid. Bull. Chem. Soc. Jpn., 48, 1341–1342 (1975).
  • 12) Fujii, T., Mukaihara, M., Agematu, H., and Tsunekawa, H., Biotransformation of L-lysine to L-pipecolic acid catalyzed by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Biosci. Biotechnol. Biochem., 66, 622–627 (2002).
  • 13) Fujii, T., Aritoku, Y., Agematu, H., and Tsunekawa, H., Increase in the rate of L-pipecolic acid production using lat-expressing Escherichia coli by lysP and yeiE amplification. Biosci. Biotechnol. Biochem., 66, 1981–1984 (2002).
  • 14) Nazabadioko, S., Perez, R. J., Brieva, R., and Gotor, V., Chemoenzymatic synthesis of (S)-2-cyanopiperidine, a key intermediate in the route to (S)-pipecolic acid and 2-substituted piperidine alkaloids. Tetrahedron Asymmet., 9, 1597–1604 (1998).
  • 15) Ng-Youn-Chen, M. C., Serreqi, A. N., Huang, Q. L., and Kazlauskas, R. J., Kinetic resolution of pipecolic acid using partially purified lipase from Aspergillus niger. J. Org. Chem., 59, 2075–2081 (1994).
  • 16) Sánchez-Sancho, F., and Herradón, B., Short syntheses of (S)-pipecolic acid, (R)-coniine, and (S)-δ-coniceine using biocatalytically generated chiral building blocks. Tetrahedron Asymmet., 9, 1951–1965 (1998).
  • 17) Muramatsu, H., Mihara, H., Kakutani, R., Yasuda, M., Ueda, M., Kurihara, T., and Esaki, N., The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. J. Biol. Chem., 280, 5329–5335 (2005).
  • 18) Goto, M., Muramatsu, H., Mihara, H., Kurihara, T., Esaki, N., Omi, R., Miyahara, I., and Hirotsu, K., Crystal structures of Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction. J. Biol. Chem., 280, 40875–40884 (2005).
  • 19) Muramatsu, H., Mihara, H., Goto, M., Miyahara, I., Hirotsu, K., Kurihara, T., and Esaki, N., A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J. Biosci. Bioeng., 99, 541–547 (2005).
  • 20) Lampel, K. A., Uratani, B., Chaudhry, G. R., Ramaley, R. F., and Rudikoff, S., Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol., 166, 238–243 (1986).
  • 21) Mihara, H., Muramatsu, H., Kakutani, R., Yasuda, M., Ueda, M., Kurihara, T., and Esaki, N., N-Methyl-L-amino acid dehydrogenase from Pseudomonas putida: a novel member of an unusual NAD(P)-dependent oxidoreductase superfamily. FEBS J., 272, 1117–1123 (2005).
  • 22) Rodwell, V. W., Pipecolic acid. Methods Enzymol., 17B, 174–188 (1971).
  • 23) Fujii, T., Narita, T., Agematu, H., Agata, N., and Isshiki, K., Characterization of L-lysine 6-aminotransferase and its structural gene from Flavobacterium lutescens IFO3084. J. Biochem. (Tokyo), 128, 391–397 (2000).
  • 24) Danson, J. W., Trawick, M. L., and Cooper, A. J., Spectrophotometric assays for L-lysine α-oxidase and γ-glutamylamine cyclotransferase. Anal. Biochem., 303, 120–130 (2002).
  • 25) Muramatsu, H., Mihara, H., Kakutani, R., Yasuda, M., Ueda, M., Kurihara, T., and Esaki, N., Enzymatic synthesis of N-methyl-L-phenylalanine by a novel enzyme, N-methyl-L-amino acid dehydrogenase, from Pseudomonas putida. Tetrahedron Asymmet., 15, 2841–2843 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.