307
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Genome-Wide Expression Profile of Sake Brewing Yeast under Shaking and Static Conditions

, , &
Pages 323-335 | Received 05 Apr 2006, Accepted 08 Oct 2006, Published online: 22 May 2014

  • 1) Hirasawa, T., Nakamura, Y., Yoshikawa, K., Ashitani, K., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H., and Shioya, S., Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl. Microbiol. Biotechnol., 70, 346–357 (2006).
  • 2) Köhrer, K., and Domdey, H., Preparation of high molecular weight RNA. Methods Enzymol., 194, 398–405 (1991).
  • 3) Shobayashi, M., Mitsueda, S., Ago, M., Fujii, T., Iwashita, K., and Iefuji, H., Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem., 69, 2381–2388 (2005).
  • 4) Casey, G. P., and Ingledew, W. M., Ethanol tolerance in yeasts. Crit. Rev. Microbiol., 13, 219–280 (1986).
  • 5) Mansure, J. J. C., Panek, A. D., Crowe, L. M., and Crowe, J. H., Trehalose inhibits ethanol effects on intact cells and liposomes. Biochem. Biophys. Acta, 1191, 309–316 (1994).
  • 6) Mishra, P., and Prasad, R., Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 30, 294–298 (1989).
  • 7) Alexandre, H., Rousseaux, I., and Charpentier, C., Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol. Lett., 124, 17–22 (1994).
  • 8) You, K. M., Rosenfield, C. L., and Knipple, D. C., Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol., 69, 1499–1503 (2003).
  • 9) Inoue, T., Iefuji, H., Fujii, T., Soga, H., and Satoh, K., Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci. Biotechnol. Biochem., 64, 229–236 (2000).
  • 10) Stukey, J. E., McDonough, V. M., and Martin, C. E., The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J. Biol. Chem., 265, 20144–20149 (1990).
  • 11) Zweytick, D., Leitner, E., Kohlwein, S. D., Yu, C., Rothblatt, J., and Daum, G., Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur. J. Biochem., 267, 1075–1082 (2000).
  • 12) Jansen-Pergakes, K., Guo, Z., Giattina, M., Sturley, S. L., and Bard, M., Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J. Bacteriol., 183, 4950–4957 (2001).
  • 13) Koffel, R., Tiwari, R., Falquet, L., and Schneiter, R., The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol. Cell. Biol., 25, 1655–1668 (2005).
  • 14) Zweytick, D., Athenstaedt, K., and Daum, G., Intracellular lipid particles of eukaryotic cells. Biochem. Biophys. Acta, 1469, 101–120 (2000).
  • 15) Parks, L. W., S-adenosylmethionine and ergosterol synthesis. J. Am. Chem. Soc., 80, 2023–2024 (1958).
  • 16) Daum, G., Lees, N. D., Bard, M., and Dickson, R., Biochemistry, cell biology and molecular biology of lipid of Saccharomyces cerevisiae. Yeast, 14, 1471–1510 (1998).
  • 17) Shobayashi, M., Mukai, N., Iwashita, K., Hiraga, Y., and Iefuji, H., A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast. Appl. Microbiol. Biotechnol., 69, 704–710 (2006).
  • 18) Ozcan, S., and Johnston, M., Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev., 63, 554–569 (1999).
  • 19) Chacinska, A., and Boguta, M., Coupling of mitochondrial translation with the formation of respiratory complexes in yeast mitochondria. Acta Biochim. Pol., 47, 973–991 (2000).
  • 20) Praekelt, U. M., Byrne, K. L., and Meacock, P. A., Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Yeast, 10, 481–490 (1994).
  • 21) Hohmann, S., and Meacock, P. A., Thiamine metabolism and thiamine diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim. Biophys. Acta, 1385, 201–219 (1998).
  • 22) Nosaka, K., Kanako, Y., Nishimura, H., and Iwashima, A., A possible role for acid phosphatase with thiamine-binding activity encoded by PHO3 gene in yeast. FEMS Microbiol. Lett., 51, 55–59 (1989).
  • 23) Tait-Kamradt, A. G., Turner, K. J., Kramer, R. A., Elliott, Q. D., Bostian, S. J., Thill, G. P., Rogers, D. T., and Bostian, K. A., Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae. Mol. Cell. Biol., 6, 1855–1865 (1986).
  • 24) Ogawa, N., DeRisi, J., and Brown, P. O., New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell, 11, 4309–4321 (2000).
  • 25) Mizoguchi, H., and Fujita, E., A new method identifying kyoukai yeast by detecting acid phosphatase activity (In Japanese). J. Brew. Soc. Japan, 77, 361–364 (1982).
  • 26) Butt, T. R., Sternberg, E. J., Herd, J., and Crooke, S. T., Cloning and expression of a yeast copper metallothionein gene. Gene, 27, 23–33 (1984).
  • 27) Watanabe, S., Iino, S., and Goto, S., Cupric sulphate medium for isolating the copper-resistant wild yeasts from the fermentating sake mash. J. Brew. Soc. Japan, 79, 137–141 (1984).
  • 28) Seymour, F., and Juliet, W. W., Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. USA, 79, 5342–5346 (1982).
  • 29) Karin, M., Najarian, R., Haslinger, A., Valenzuela, P., Welch, J., and Fogel, S., Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc. Natl. Acad. Sci. USA, 81, 337–341 (1984).
  • 30) Wicksteed, B. L., Collins, I., Dershowitz, A., Stateva, L. I., Green, R. P., Oliver, S. G., Brown, A. J., and Newlon, C. S., A physical comparison of chromosome III in six strains of Saccharomyces cerevisiae. Yeast, 10, 39–57 (1994).
  • 31) Gaisne, M., Becam, A. M., Verdiere, J., and Herbert, C. J., A ‘natural’ mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). Curr. Genet., 36, 195–200 (1999).
  • 32) Tamura, K., Gu, Y., Wang, Q., Yamada, T., Ito, K., and Shimoi, H., A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J. Biosci. Bioeng., 98, 159–166 (2004).
  • 33) Kwast, K. E., Burke, P. V., and Poyton, R. O., Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J. Exp. Biol., 201, 1177–1195 (1998).
  • 34) Kwast, K. E., Lai, L. C., Menda, N., James, D. T., 3rd, Aref, S., and Burke, P. V., Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of ROX1 and other factors in mediating the anoxic response. J. Bacteriol., 184, 250–265 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.