329
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Calcium from LactoCalciumTM Milk Mineral after Digestion with Pepsin Stimulates Mineralized Bone Nodule Formation in Human Osteoblast-Like SaOS-2 Cells in Vitro and May Be Rendered Bioavailable in Vivo

, &
Pages 336-342 | Received 14 Apr 2006, Accepted 01 Aug 2006, Published online: 22 May 2014

  • 1) Recker, R. R., Prevention of osteoporosis: calcium nutrition. Osteo. Int., 3, 163–165 (1993).
  • 2) Buclin, T., Cosma, M., Appenzeller, M., Jacquet, A. F., Decosterd, L. A., Biollaz, J., and Burckhardt, P., Diet acids and alkalis influence calcium retention in bone. Osteo. Int., 12, 493–499 (2001).
  • 3) Consensus development conference Diagnosis, prophylaxis and treatment of osteoporosis. Am. J. Med., 94, 646–650 (1993).
  • 4) Cashman, K. D., Calcium intake, calcium bioavailability and bone health. Brit. J. Nutr., 87, 169S–177S (2002).
  • 5) Gueguen, L., and Pointillart, A., The bioavailability of dietary calcium. Am. Coll. Nutr., 19, 119S–136S (2000).
  • 6) Buchowski, M. S., and Miller, D. D., Lactose calcium source and age affect calcium bioavailability in rats. J. Nutr., 121, 1746–1755 (1991).
  • 7) Buchowski, M. S., Sowizral, K. C., Lengemann, F. W., Van Campen, D., and Miller, D. D., A comparison of intrinsic and extrinsic tracer methods for estimating calcium bioavailability to rats from dairy foods. J. Nutr., 119, 228–234 (1989).
  • 8) Peterson, C. A., Eurell, J. A., and Erdman, Jr. J. W., Bone composition and histology of young growing rats fed diets of varied calcium bioavailability: spinach, nonfat dry milk, or calcium carbonate added to casein. J. Nutr., 122, 137–144 (1992).
  • 9) Wolters, M. G., Schreuder, H. A., van den Heuvel, G., van Lonkhuijsen, H. J., Hermus, R. J., and Voragen, A. G., A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: application to breads varying in phytic acid content. Brit. J. Nutr., 69, 849–861 (1993).
  • 10) Bosscher, D., Van Caillie-Bertrand, M., and Deelstra, H., Effect of thickening agents, based on soluble dietary fiber, on the availability of calcium, iron, and zinc from infant formulas. Nutrition, 17, 614–618 (2001).
  • 11) Ekmekcioglu, C., A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems. Food Chem., 76, 225–230 (2002).
  • 12) Cai, J., Zhang, Q., Wastney, M. E., and Weaver, C. M., Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats. Exp. Biol. Med. (Maywood), 229, 40–45 (2004).
  • 13) Reddy, M. B., and Cook, J. D., Assessment of dietary determinants on nonheme-iron absorption in humans and rats. Am. J. Clin. Nutr., 54, 723–728 (1991).
  • 14) Rao, L. G., Liu, L. J., Murray, T. M., McDermott, E., and Zhang, X., Estrogen added intermittently, but not continuously, stimulates differentiation and bone formation in SaOS-2 cells. Biol. Pharm. Bull., 26, 936–945 (2003).
  • 15) Maharaj, I., Nairn, J. G., and Campbell, J. B., Simple rapid method for the preparation of enteric-coated microspheres. J. Pharm. Sci., 73, 39–42 (1984).
  • 16) Lin, Y., Liu, L. J.-F., Murray, T. M., and Rao, L. G., Effect of Raloxifene on bone formation and its interaction with parathyroid hormone. J. Endocrinol. Invest., 27, 416–423 (2004).
  • 17) Vegarud, G. E., Langsrud, T., and Svenning, C., Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Brit. J. Nutr., 84, S91–98 (2000).
  • 18) Hirai, Y., Permyakov, E. A., and Berliner, L. J., Proteolytic digestion of α-lactalbumin: physiological implications. J. Prot. Chem., 11, 51–57 (1992).
  • 19) Kato, K., Toba, Y., Matsuyama, H., Aoki, T., Aoe, S., and Takada, Y., A novel type of milk calcium has higher calcium bioavailability compared with the hydroxyapatite type of milk calcium. J. Nutr. Sci. Vitaminol., 48, 390–394 (2002).
  • 20) Rao, L. G., Liu, L. J.-F., and Murray, T. M., Intermittent exposure to estrogen stimulates mineralized bone nodule formation and alkaline phosphatase activity in a calcium-dependent manner in long-term cultures of SaOS-2 cells. Bone Min. Res., 14(Suppl. 1), F067 (1999).
  • 21) Yamaguchi, T., Kifor, O., Chattopadhyay, N., Brown, E. M., and O’Malley, B. W., Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem. Biophys. Res. Commun., 243, 753–757 (1998).
  • 22) Garner, S. C., Pi, M., Tu, Q., and Quarles, L. D., Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype [see comment]. Endocrinology, 142, 3996–4005 (2001).
  • 23) Elders, P., Lips, P., and Netelenbos, J. C., Long-term effect of calcium supplementation on bone loss in postmenopausal women. J. Bone Miner. Res., 9, 963–970 (1994).
  • 24) Shea, B., Wells, G., Cranney, A., Zytaruk, N., Robinson, V., Griffith, L., Hamel, C., Ortiz, Z., Peterson, J., Adachi, J., Tugwell, P., and Guyatt, G., Calcium supplementation on bone loss in postmenopausal women. Cochrane Database System. Rev., 1, CD004526 (2004).
  • 25) Heaney, R. P., Pathophysiology of osteoporosis. J. Bone Miner. Res., 312, 251–256 (1996).
  • 26) Tian, Y., Li, W., Hai, G., and Zhang, Y., Effect of calcium supplement on superoxide dismutase and malonaldehyde of disuse osteoporosis in young rats. Wei Sheng Yan Jiu (Article in Chinese), 32, 49–50 (2003).
  • 27) Jorde, R., Szumlas, K., Haug, E., and Sundsfjord, J., The effects of calcium supplementation to patients with primary hyperparathyroidism and a low calcium intake. Eur. J. Nutr., 41, 258–263 (2002).
  • 28) Devine, A., Dick, I. M., Heal, S. J., Criddle, R. A., and Prince, R. L., A 4-year follow-up study of the effects of calcium supplementation on bone density in elderly postmenopausal women. Osteo. Int., 7, 23–28 (1997).
  • 29) Baeksgaard, L., Andersen, K. P., and Hyldstrup, L., Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women. Osteo. Int., 8, 255–260 (1998).
  • 30) McCabe, L. D., Martin, B. R., McCabe, G. P., Johnston, C. C., Weaver, C. M., and Peacock, M., Dairy intakes affect bone density in the elderly. Am. J. Clin. Nutr., 80, 1066–1074 (2004).
  • 31) Davis, J. W., Ross, P. D., Johnson, N. E., and Wasnich, R. D., Estrogen and calcium supplement use among Japanese–American women: effects upon bone loss when used singly and in combination. Bone, 17, 369–373 (1995).
  • 32) Peacock, M., Liu, G., Carey, M., McClintock, R., Ambrosius, W., Hui, S., and Johnston, C. C., Effect of calcium or 25OH vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60. J. Clin. Endocrinol. Metab., 85, 3011–3019 (2000).
  • 33) Hildebolt, C. F., Pilgram, T. K., Dotson, M., Armamento-Villareal, R., Hauser, J., Cohen, S., and Civitelli, R., Estrogen and/or Calcium plus vitamin D increase mandibular bone mass. J. Perio., 75, 811–816 (2004).
  • 34) Ringe, J. D., and Setnikar, I., Monofluorophosphate combined with hormone replacement therapy in postmenopausal osteoporosis. An open-label pilot efficacy and safety study. Rheumatol. Int., 22, 27–32 (2002).
  • 35) Yen, M. L., Yen, B. L., Jang, M. H., Hsu, S. H., Cheng, W. C., and Tsai, K. S., Effects of alendronate on osteopenic postmenopausal Chinese women. Bone, 27, 681–685 (2000).
  • 36) Giannini, S., D’Angelo, A., Sartori, L., Passeri, G., and Dalle Carbonare, L. G. C., Continuous and cyclical clodronate therapies and bone density in postmenopausal bone loss. Obstet. Gynecol., 88, 431–436 (1996).
  • 37) Agnusdei, D., Crepaldi, G., Isaia, G., Mazzuoli, G., Ortolani, S., Passeri, M., Bufalino, L., and Gennari, C., A double blind, placebo-controlled trial of ipriflavone for prevention of postmenopausal spinal bone loss. Calcif. Tiss. Int., 61, 142–147 (1997).
  • 38) Adami, S., Bufalino, L., Cervetti, R., Di Marco, C., Di Munno, O., Fantasia, L., Isaia, G. C., Serni, U., Vecchiet, L., and Passeri, M., Ipriflavone prevents radial bone loss in postmenopausal women with low bone mass over 2 years. Osteo. Int., 7, 119–125 (1997).
  • 39) Breitman, P. L., Fonseca, D., Cheung, A. M., and Ward, W. E., Isoflavones with supplemental calcium provide greater protection against the loss of bone mass and strength after ovariectomy compared to isoflavones alone. Bone, 33, 597–605 (2003).
  • 40) Torres, A., Garcia, S., Gomez, A., Gonzalez, A., Barrios, Y., Concepcion, M. T., Hernandez, D., Garcia, J. J., Checa, M. D., and Lorenzo, V. S. E., Treatment with intermittent calcitriol and Calcium reduces bone loss after renal transplantation. Kid. Int., 65, 705–712 (2004).
  • 41) Boutsen, Y., Jamart, J., Esselinckx, W., Stoffel, M., and Devogelaer, J. P., Primary prevention of glucocorticoid-induced osteoporosis with intermittent intravenous pamidronate: a randomized trial. Calcif. Tiss. Int., 61, 266–271 (1997).
  • 42) Dawson-Hughes, B., Harris, S. S., Dallal, G. E., Lancaster, D. R., and Zhou, Q., Calcium supplement and bone medication use in a US Medicare health maintenance organization. Osteo. Int., 13, 657–662 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.