199
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Design of Sphingomonad-Detecting Probes for a DNA Array, and Its Application to Investigate the Behavior, Distribution, and Source of Rhizospherous Sphingomonas and Other Sphingomonads Inhabiting an Acid Sulfate Soil Paddock in Kalimantan, Indonesia

, , , , &
Pages 343-351 | Received 12 May 2006, Accepted 04 Nov 2006, Published online: 22 May 2014

  • 1) Hashidoko, Y., Hasegawa, T., Purnomo, E., Tada, M., Limin, S. H., Osaki, M., and Tahara, S., Neutral rhizoplane pH of local rice and some predominant tree species in South and Central Kalimantans: a possible strategy of plant adaptation to acidic-soil. Tropics, 14, 139–147 (2005).
  • 2) Hasegawa, T., Purnomo, E., Hashidoko, Y., Osaki, M., and Rusmayadi, G., Grain yield and its variation of local rice varieties grown on acid sulphate soil in South Kalimantan. Jpn. J. Crop Sci., 73, 220–221 (2004).
  • 3) Kawasaki, S., Moriguchi, R., Sekiya, K., Nakai, T., Ono, E., Kume, K., and Kawahara, K., The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J. Bacteriol., 176, 284–290 (1994).
  • 4) Olsen, I., and Jantzen, E., Sphingolipids in bacteria and fungi. Anaerobe, 7, 103–112 (2001).
  • 5) Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T., and Yamamoto, H., Proposals of Shingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbial. Immunol., 34, 99–119 (1990).
  • 6) Kirimura, K., Nakagawa, H., Tsuji, K., Matsuda, K., Kurane, R., and Usami, S., Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomonas sp. CDH-7. Biosci. Biotechnol. Biochem., 63, 1563–1568 (1999).
  • 7) Moore, E., Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas. Syst. Appl. Microbiol., 18, 539–548 (1995).
  • 8) Mishima, M., Momma, K., Hashimoto, W., Mikami, B., and Murata, K., Super-channel in bacteria: function and structure of the macromolecule import system mediated by a pit-dependent ABC transporter. FEMS Microbiol. Lett., 204, 215–221 (2001).
  • 9) Coughlin, M. F., Kinkle, B. K., and Bishop, P. L., Degradation of acid orange 7 in an aerobic biofilm. Chemosphere, 46, 11–19 (2002).
  • 10) Koskinen, R., Ali-Vehmas, T., Kaempfer, P., Laurikkala, M., Tsitko, I., Kostyal, E., Atroshi, F., and Salkinoja-Salonen, M., Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J. Appl. Microbiol., 89, 687–696 (2000).
  • 11) Kim, H., Kunito, T., Senoo, K., Kawahara, K., Murakami, K., and Oyaizu, H., High population of Sphingomonas species on plant surface. J. Appl. Microbiol., 85, 731–736 (1998).
  • 12) Takeuchi, M., Sakane, T., Yanagi, M., Yamasato, K., Hamana, K., and Yokota, A., Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int. J. Sys. Bacteriol., 45, 334–341 (1995).
  • 13) Kawahara, K., Mizuta, I., Katabami, W., Koizumi, M., and Wakayama, S., Isolation of Sphingomonas strains from ears of rice and other plants of family Gramineae. Biosci. Biotechnol. Biochem., 58, 600–601 (1994).
  • 14) Elasri, M. O., and Miller, R. V., Study of the response of a biofilm bacterial community to UV radiation. Appl. Environ. Microbiol., 65, 2025–2031 (1999).
  • 15) Morris, C. E., Monier, J. M., and Jacques, M. A., A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol., 64, 4789–4795 (1998).
  • 16) Hashidoko, Y., Ecochemical studies of interrelationships between epiphytic bacteria and host plants via secondary metabolites. Biosci. Biotechnol. Biochem., 69, 1427–1441 (2005).
  • 17) Ogita, N., Hashidoko, Y., Limin, S. H., and Tahara, S., Linear 3-hydroxybutyrate tetramer (HB4) produced by Sphingomonas sp. is characterized as a growth promoting factor for some rhizobacterial composers. Biosci. Biotechnol. Biochem., 70, 2325–2329 (2006).
  • 18) Cho, J.-C., and Tiedje, J. M., Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays. Appl. Environ. Microbiol., 67, 3677–3682 (2001).
  • 19) Peplies, J., Glockner, F. O., and Amann, R., Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl. Environ. Microbiol., 69, 1397–1407 (2003).
  • 20) Rudi, K., Flateland, S. L., Hanssen, J. F., Bengtsson, G., and Nissen, H., Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere. Appl. Environ. Microbiol., 68, 1146–1156 (2002).
  • 21) Rudi, K., Nogva, H. K., Moen, B., Nissen, H., Bredholt, S., Møretrø, T., Naterstad, K., and Holck, A., Development and application of new nucleic acid-based technologies for microbial community analyses in foods. Int. J. Food Microbiol., 78, 171–180 (2002).
  • 22) Wang, R.-F., Beggs, M. L., Erickson, B. D., and Cerniglia, C. E., DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol. Cellular Probes, 18, 223–234 (2004).
  • 23) Heuer, H., Hartung, K., Wieland, G., Kramer, I., and Smalla, K., Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl. Environ. Microbiol., 65, 1045–1049 (1999).
  • 24) Tateno, Y., Saitou, N., Okubo, K., Sugawara, H., and Gojobori, T., DDBJ in collaboration with mass-sequencing teams on annotation. Nucleic Acid Res., 33, 25–28 (2005).
  • 25) Denner, E. B. M., Vybiral, D., Koblizek, M., Kampfer, P., Busse, H.-J., and Velimirov, B., Erythrobacter citreus sp. nov., a yellow pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int. J. Sys. Evol. Microbiol., 52, 1655–1661 (2002).
  • 26) Yabuuchi, E., Kosako, Y., Fujiwara, N., Naka, T., Matsunaga, I., Ogura, H., and Kobayashi, K., Emendation of the genus Sphingomonas Yabuuchi et al., 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int. J. Sys. Evol. Microbiol., 52, 1485–1496 (2002).
  • 27) Ranjard, L., Poly, F., Lata, J. C., Mougel, C., Thioulouse, J., and Nazaret, S., Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: Biological and methodological variability. Appl. Environ. Microbiol., 67, 4479–4487 (2001).
  • 28) Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J., 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173, 697–703 (1991).
  • 29) Hashidoko, Y., Tada, M., Osaki, M., and Tahara, S., Soft gel medium solidified with gellan gum for preliminary screening for root-associating, free-living nitrogen-fixing bacteria inhabiting the rhizoplane of plants. Biosci. Biotechnol. Biochem., 66, 2259–2263 (2002).
  • 30) Rath, P. M., and Schmidt, D., Gellan gum as a suitable gelling agent in microbial media for PCR applications. J. Med. Microbial., 50, 108–109 (2001).
  • 31) Miller, D. N., Bryant, J. E., Madsen, E. L., and Ghiorse, W. C., Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol., 65, 4715–4724 (1999).
  • 32) Muyzer, G., De Waal, E. C., and Uitterlinden, A. G., Profiling of complex microbial populations by denatured gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59, 695–700 (1993).
  • 33) Sørensen, S. R., Ronen, Z., and Aamand, J., Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl. Environ. Microbiol., 67, 5403–5409 (2001).
  • 34) Hasegawa, T., Purnomo, E., Hashidoko, Y., Osaki, M., and Rusmayadi, G., Effects of genotypes and transplanting methods on panicle weights of rice grown on acid sulfate soil in South Kalimantan. Jpn. J. Crop Sci., 73, 222–223 (2004).
  • 35) Chabbi, A., Juncus bulbosus as a pioneer species in acidic lignite mining lakes: interactions, mechanism and survival strategies. New Phytol., 144, 133–142 (1999).
  • 36) Chabbi, A., Hines, M. E., and Rumpel, C., The role of organic carbon excretion by bulbous rush roots and its turnover and utilization by bacteria under iron plaques in extremely acid sediments. Environ. Exp. Bot., 46, 237–245 (2001).
  • 37) Adhikari, T. B., Joseph, C. M., Yang, G., Phillips, D. A., and Nelson, L. M., Evaluation of bacteria isolated from rice for growth promotion and biological control of seedling disease of rice. Can. J. Microbiol., 47, 916–924 (2001).
  • 38) Hashidoko, Y., Gotou, Y., Osaki, M., Purnomo, E., Limin, S. H., and Tahara, S., Characterization and ecological role of free-living nitrogen-fixing bacteria isolated from the rhizoplane of Melastoma malabathricum inhabiting acidic plain lands in Kalimantan. Tropics, 15, 351–356 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.