283
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

In Vivo Expression of UDP-N-Acetylglucosamine: α-3-D-Mannoside β-1,2-N-Acetylglucosaminyltransferase I (GnT-1) in Aspergillus oryzae and Effects on the Sugar Chain of α-Amylase

, , , &
Pages 2662-2668 | Received 12 May 2006, Accepted 21 Jul 2006, Published online: 22 May 2014

  • 1) Chen, S., Tan, J., Reinhold, V. N., Spence, A. M., and Schachter, H., UDP-N-acetylglucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I and UDP-N-acetylglucosamine: α-6-D-mannoside β-1,2-N-acetylglucosaminyltransferase II in Caenorhabditis elegans. Biochim. Biophys. Acta, 19, 271–279 (2002).
  • 2) Moller, G., Reck, F., Paulsen, H., Kaur, K. J., Sarkar, M., Schachter, H., and Brockhausen, I., Control of glycoprotein synthesis: substrate specificity of rat liver UDP-GlcNAc:Man α3R β2-N-acetylglucosaminyltransferase I using synthetic substrate analogues. Glycoconj. J., 9, 180–190 (1992).
  • 3) Chiba, Y., Suzuki, M., Yoshida, S., Yoshida, A., Ikenaga, H., Takeuchi, M., Jigami, Y., and Ichishima, E., Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J. Biol. Chem., 9, 26298–26304 (1998).
  • 4) Bobrowicz, P., Davidson, R. C., Li, H., Potgieter, T. I., Nett, J. H., Hamilton, S. R., Stadheim, T. A., Miele, R. G., Bobrowicz, B., Mitchell, T., Rausch, S., Renfer, E., and Wildt, S., Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology, 14, 757–766 (2004).
  • 5) Choi, B. K., Bobrowicz, P., Davidson, R. C., Hamilton, S. R., Kung, D. H., Li, H., Miele, R. G., Nett, J. H., Wildt, S., and Gerngross, T. U., Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. USA, 100, 5022–5027 (2003).
  • 6) Yoshida, T., Kato, Y., Asada, Y., and Nakajima, T., Filamentous fungus Aspergillus oryzae has two types of α-1,2-mannosidases, one of which is a microsomal enzyme that removes a single mannose residue from Man9GlcNAc2. Glycoconj. J., 17, 745–748 (2000).
  • 7) Akao, T., Yamaguchi, M., Yahara, A., Yoshiuchi, K., Fujita, H., Yamada, O., Akita, O., Ohmachi, T., Asada, Y., and Yoshida, T., Cloning and expression of 1,2-α-mannosidase gene (fmanIB) from filamentous fungus Aspergillus oryzae: in vivo visualization of the FmanIBp-GFP fusion protein. Biosci. Biotechnol. Biochem., 70, 471–479 (2006).
  • 8) Kalsner, I., Hintz, W., Reid, L. S., and Schachter, H., Insertion into Aspergillus nidulans of functional UDP-GlcNAc: α3-D-mannoside β-1,2-N-acetylglucosaminyl-transferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconj. J., 12, 360–370 (1995).
  • 9) Yamaguchi, H., Ikenaka, T., and Matsushima, Y., The complete sequence of a glycopeptide obtained from Taka-amylase A. J. Biochem. (Tokyo), 70, 587–594 (1971).
  • 10) Hata, Y., Kitamoto, K., Gomi, K., Kumagai, C., and Tamura, G., Functional elements of the promoter region of the Aspergillus oryzae glaA gene encoding glucoamylase. Curr. Genet., 22, 85–91 (1992).
  • 11) Maruyama, J., Nakajima, H., and Kitamoto, K., Visualization of nuclei in Aspergillus oryzae with EGFP and analysis of the number of nuclei in each conidium by FACS. Biosci. Biotechnol. Biochem., 65, 1504–1510 (2001).
  • 12) Toda, H., and Akabori, S., Chromatography of Taka-amylase A on diethylaminoethyl-cellulose column. J. Biochem. (Tokyo), 53, 102–110 (1963).
  • 13) Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  • 14) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277, 680–685 (1970).
  • 15) Hase, S., Ibuki, T., and Ikenaka, T., Re-examination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J. Biochem., 95, 197–203 (1984).
  • 16) Fernandez-Abalos, J. M., Fox, H., Pitt, C., Wells, B., and Doonan, J. H., Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol. Microbiol., 27, 121–130 (1998).
  • 17) Maruyama, J., Nakajima, H., and Kitamoto, K., Observation of EGFP-visualized nuclei and distribution of vacuoles in Aspergillus oryzae arpA null mutant. FEMS Microbiol. Lett., 206, 57–61 (2002).
  • 18) Wedlich-Soldner, R., Schulz, I., Straube, A., and Steinberg, G., Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol. Biol. Cell, 13, 965–977 (2002).
  • 19) Brandizzi, F., Snapp, E. L., Roberts, A. G., Lippincott-Schwartz, J., and Hawes, C., Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell, 14, 1293–1309 (2002).
  • 20) Shao, M. C., and Wold, F., The effect of the protein matrix on glycan processing in glycoproteins: kinetic analysis of three rat liver Golgi enzymes. J. Biol. Chem., 263, 5771–5774 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.