318
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Isolation of Tryptophol as an Apoptosis-Inducing Component of Vinegar Produced from Boiled Extract of Black Soybean in Human Monoblastic Leukemia U937 Cells

, , , , &
Pages 371-379 | Received 16 Jun 2006, Accepted 16 Nov 2006, Published online: 22 May 2014

  • 1) Furuta, S., Takahashi, M., Takahata, Y., Nishiba, Y., Oki, T., Masuda, M., Kobayashi, M., and Suda, I., Radical-scavenging activities of soybean cultivars with black seed coats. Food Sci. Technol. Res., 9, 73–75 (2003).
  • 2) Liao, H. F., Chou, C. J., Wu, S. H., Khoo, K. H., Chen, C. F., and Wang, S. Y., Isolation and characterization of an active compound fron black soybean (Glycine max (L.) Merr.) and its effect on proliferation and differentiation of human leukemic U937 cells. Anticancer Drugs, 12, 841–846 (2001).
  • 3) Yamai, M., Tsumura, K., Kimura, M., Fukuda, S., Murakami, T., and Kimura, Y., Antiviral activity of a hot water extract of black soybean against human respiratory illness virus. Biosci. Biotechnol. Biochem., 67, 1071–1079 (2003).
  • 4) Kikuchi, H., Matsuyama, Z., and Nozaki, Y., In vivo effect of boiled water extract from black soybean on the fluidity of whole blood through capillary-model microchannels. Hemorheology and Related Research (in Japanese), 2, 61–66 (1999).
  • 5) Nanda, K., Miyoshi, N., Nakamura, Y., Shimoji, Y., Tamura, Y., Nishikawa, Y., Uenakai, K., Kohno, H., and Tanaka, T., Extract of vinegar “Kurosu” from unpolished rice inhibits the proliferation of human cancer cells. J. Exp. Clin. Cancer Res., 23, 69–75 (2004).
  • 6) Nishidai, S., Nakamura, Y., Torikai, K., Yamamoto, M., Ishihara, N., Mori, H., and Ohigashi, H., Kurosu, a traditional vinegar produced from unpolished rice, suppresses lipid peroxidation in vitro and in mouse skin. Biosci. Biotechnol. Biochem., 64, 1909–1914 (2004).
  • 7) Shimoji, Y., Sugie, S., Kohno, H., Tanaka, T., Nanda, K., Tamura, Y., Nishikawa, Y., Hayashi, R., Uenakai, K., and Ohigashi, H., Extract of vinegar “Kurosu” from unpolished rice inhibits the development of colonic aberrant crypt foci induced by azoxymethane. J. Exp. Clin. Cancer Res., 22, 591–597 (2003).
  • 8) Shimoji, Y., Tanaka, T., Nakamura, Y., Nanda, K., Nishidai, S., Nishikawa, Y., Ishihara, N., Uenakai, K., and Ohigashi, H., Isolation and identification of DPPH radical scavenging compounds in Kurosu (Japanese unpolished rice vinegar). J. Agric. Food Chem., 50, 6501–6503 (2002).
  • 9) Inagaki, S., Morimura, S., Shigematsu, T., Kida, K., and Akutagawa, H., Apoptosis induction by vinegar produced from boiled extract of black soybean in human monoblastic leukemia U937 cells: difference in sensitivity to cell toxicity compared to normal lymphocytes. Food Sci. Technol. Res., 11, 311–317 (2005).
  • 10) Arends, M. J., Morris, R. G., and Wyllie, A. H., Apoptosis: the role of the endonuclease. Am. J. Pathol., 136, 593–608 (1990).
  • 11) Cohen, J. J., Apoptosis. Immunol. Today, 14, 126–130 (1993).
  • 12) Kerr, J. F. R., Wyllie, A. H., and Currie, A. R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239–257 (1972).
  • 13) Savill, J., Fadok, V., Henson, P., and Haslett, C., Phagocyte recognition of cells undergoing apoptosis. Immunol. Today, 14, 131–136 (1993).
  • 14) Steller, H., Mechanisms and genes of cellular suicide. Science, 267, 1445–1449 (1995).
  • 15) Katsuno, Y., Koyama, Y., Saeki, K., Sazuka, M., Ookawa, K., and Isemura, M., Apoptosis-inducing activity of a driselase digest fraction of green tea residue. Biosci. Biotechnol. Biochem., 65, 198–201 (2001).
  • 16) Koyama, Y., Katsuno, Y., Miyoshi, N., Hayakawa, S., Mita, T., Muto, H., Isemura, S., Aoyagi, Y., and Isemura, M., Apoptosis induction by lectin isolated from the mushroom Boletopsis leucomelas in U937 cells. Biosci. Biotechnol. Biochem., 66, 784–789 (2002).
  • 17) Watanabe, M., Hayakawa, S., Isemura, M., Kumazawa, S., Nakayama, T., Mori, C., and Kawakami, T., Identification of licocoumarone as an apoptosis-inducing component in licorice. Biol. Pharm. Bull., 25, 1388–1390 (2002).
  • 18) Watanabe, M., Ohata, M., Hayakawa, S., Isemura, M., Kumazawa, S., Nakayama, T., Furugori, M., and Kinae, N., Identification of 6-methyl sulfinylhexyl isothiocyanate as an apoptosis-inducing component in wasabi. Phytochemistry, 62, 733–739 (2003).
  • 19) Saeki, K., Hayakawa, S., Isemura, M., and Miyase, T., Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry, 53, 391–394 (2002).
  • 20) Bonnesen, C., Eggleston, M. I., and Hayes, D. J., Dietary indoles and isothiocyantes that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res., 61, 6120–6139 (2001).
  • 21) Park, O. J., and Surh, Y. J., Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol. Lett., 150, 43–56 (2004).
  • 22) Imai, K., Suga, K., and Nakachi, K., Cancer-preventive effects of drinking green tea among a Japanese population. Prev. Med., 26, 269–275 (2004).
  • 23) Herbert, J., Hurley, T., Olendzki, B., Teas, J., Ma, Y., and Hampl, J. S., Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. J. Nat. Cancer Inst., 90, 1637–1647 (1998).
  • 24) Shukla, S., and Gupta, S., Dietary agents in the chemoprevention of prostate cancer. Nutr. Cancer, 53, 18–32 (2005).
  • 25) Villa, P., Kaufmann, S. H., and Earnshaw, W. C., Caspases and caspase inhibitors. Trends Biochem. Sci., 22, 388–393 (1997).
  • 26) Cohen, G. M., Caspases: the executioners of apoptosis. Biochem. J., 326, 1–16 (1997).
  • 27) Mandal, D., Mazumder, A., Das, P., Kundu, M., and Basu, J., Fas-, caspase 8-, and caspase-3-dependent signaling regurates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J. Biol. Chem., 280, 39460–39467 (2005).
  • 28) Nakamura, Y., Kawakami, M., Yoshihiro, A., Miyoshi, N., Ohigashi, H., Kawai, K., Osawa, T., and Uchida, K., Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J. Biol. Chem., 277, 8492–8499 (2002).
  • 29) Zheng, L., Yan, X., Xu, J., Chen, H., and Lin, W., Hemeniacidon perlene associated bioactive bacterium Pseudomonas sp. NJ 6-3-1. Appl. Biochem. Microbiol., 41, 29–33 (2005).
  • 30) Birt, D. F., Walker, B., Tibbels, M. G., and Bresnick, E., Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis, 7, 959–963 (1986).
  • 31) Ge, X., Yannai, S., Rennert, G., Gruener, N., and Fares, F. A., 3,3′-Diindolylmethan induces apoptosis in human cancer cells. Biochem. Biophys. Res. Commun., 228, 153–158 (1996).
  • 32) Hong, C., Firestone, G. L., and Bjeldanes, L. F., Bcl-2 family-mediated apoptotic effect of 3,3′-diindolylmethan (DIM) in human breast cancer cells. Biochem. Pharmacol., 63, 1085–1097 (2002).
  • 33) Nachshon-Kedmi, M., Yannai, S., Haj, A., and Fares, A. F., Indole-3-carbinol and 3,3′-diindolylmethan induce apoptosis in human prostate cancer cells. Food Chem. Toxicol., 41, 745–752 (2003).
  • 34) Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L., and Korsmeyer, S. J., Bid: a novel BH3 domain-only death agonist. Genes Dev., 10, 2859–2869 (1996).
  • 35) Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94, 481–490 (1998).
  • 36) Li, H., Zhu, H., Xu, C. J., and Yuan, J., Cleavage of bid by caspase 8 mediates the mitochondorial damage in the Fas pathway of apoptosis. Cell, 94, 491–501 (1998).
  • 37) Hayakawa, S., Saeki, K., Sazuka, M., Suzuki, Y., Shoji, Y., Ohta, T., Kaji, K., Yuo, A., and Isemura, M., Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem. Biophys. Res. Commun., 285, 1102–1106 (2001).
  • 38) Juan, G., Pan, W., and Darzynkiewicz, Z., DNA segments sensitive to single-strand-specific nucleases are present in chromatin of mitotic cells. Exp. Cell Res., 227, 197–202 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.