231
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and Characterization of Sporulation-Initiation Mutation in the Bacillus subtilisprfB Gene

, , , , &
Pages 397-406 | Received 14 Aug 2006, Accepted 30 Oct 2006, Published online: 22 May 2014

  • 1) Burbulys, D., Trach, K. A., and Hoch, J. A., Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 64, 545–552 (1991).
  • 2) Satola, S., Kirchman, P. A., and Moran, C. P., Jr., Spo0A binds to a promoter needed by σA RNA polymerase during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 88, 4533–4537 (1991).
  • 3) Trach, K., and Hoch, J. A., Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol., 8, 69–79 (1993).
  • 4) Chibazakura, T., Kawamura, F., Asai, K., and Takahashi, H., Effect of spo0 mutations on spo0A promoter switching at the initiation of sporulation in Bacillus subtilis. J. Bacteriol., 177, 4520–4523 (1995).
  • 5) Dubnau, E., Weir, J., Nair, G., Carter, L., 3rd, Moran, C., Jr., and Smith, I., Bacillus sporulation gene spo0H codes for σ30 (σH). J. Bacteriol., 170, 1054–1062 (1988).
  • 6) Weir, J., Predich, M., Dubnau, E., Nair, G., and Smith, I., Regulation of spo0H, a gene coding for the Bacillus subtilis σH factor. J. Bacteriol., 173, 521–529 (1991).
  • 7) Predich, M., Nair, G., and Smith, I., Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing σH. J. Bacteriol., 174, 2771–2778 (1992).
  • 8) Healy, J., Weir, J., Smith, I., and Losick, R., Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σH in Bacillus subtilis. Mol. Microbiol., 5, 477–487 (1991).
  • 9) Asai, K., Kawamura, F., Yoshikawa, H., and Takahashi, H., Expression of kinA and accumulation of σH at the onset of sporulation in Bacillus subtilis. J. Bacteriol., 177, 6679–6683 (1995).
  • 10) Errington, J., Daniel, R. A., and Scheffers, D. J., Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev., 67, 52–65 (2003).
  • 11) Kawasaki, H., Matsuyama, S., Sasaki, S., Akita, M., and Mizushima, S., SecA protein is directly involved in protein secretion in Escherichia coli. FEBS Lett., 242, 431–434 (1989).
  • 12) Oliver, D. B., and Beckwith, J., Identification of a new gene (secA) and gene product involved in the secretion of envelope proteins in Escherichia coli. J. Bacteriol., 150, 686–691 (1982).
  • 13) Nakai, M., Goto, A., Nohara, T., Sugita, D., and Endo, T., Identification of the SecA protein homolog in pea chloroplasts and its possible involvement in thylakoidal protein transport. J. Biol. Chem., 269, 31338–31341 (1994).
  • 14) Miyakawa, Y., and Komano, T., Study on the cell cycle of Bacillus subtilis using temperature-sensitive mutants: isolation and genetic analysis of the mutants defective in septum formation. Mol. Gen. Genet., 181, 207–214 (1981).
  • 15) Sadaie, Y., and Kada, T., Effect of septum-initiation mutations on sporulation and competent cell formation in Bacillus subtilis. Mol. Gen. Genet., 190, 176–178 (1983).
  • 16) Sadaie, Y., and Kada, T., Bacillus subtilis gene involved in cell division, sporulation, and exoenzyme secretion. J. Bacteriol., 163, 648–653 (1985).
  • 17) Sadaie, Y., Takamatsu, H., Nakamura, K., and Yamane, K., Sequencing reveals similarity of the wild-type div+ gene of Bacillus subtilis to the Escherichia coli secA gene. Gene, 98, 101–105 (1991).
  • 18) Takamatsu, H., Fuma, S., Nakamura, K., Sadaie, Y., Shinkai, A., Matsuyama, S., Mizushima, S., and Yamane, K., In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. J. Bacteriol., 174, 4308–4316 (1992).
  • 19) Asai, K., Kawamura, F., Hirata, A., Yoshikawa, H., and Takahashi, H., SecA is required for three distinct stages of sporulation in Bacillus subtilis. J. Gen. Appl. Microbiol., 39, 583–596 (1993).
  • 20) Kobayashi, H., Ohashi, Y., Nanamiya, H., Asai, K., and Kawamura, F., Genetic analysis of SecA-SecY interaction required for spore development in Bacillus subtilis. FEMS Microbiol. Lett., 184, 285–289 (2000).
  • 21) Asai, K., Fujita, M., Kawamura, F., Takahashi, H., Kobayashi, Y., and Sadaie, Y., Restricted transcription from sigma H or phosphorylated spo0A dependent promoters in the temperature-sensitive secA341 mutant of Bacillus subtilis. Biosci. Biotechnol. Biochem., 62, 1707–1713 (1998).
  • 22) Asai, K., Kawamura, F., Sadaie, Y., and Takahashi, H., Isolation and characterization of a sporulation initiation mutation in the Bacillus subtilis secA gene. J. Bacteriol., 179, 544–547 (1997).
  • 23) Herbort, M., Klein, M., Manting, E. H., Driessen, A. J., and Freudl, R., Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. J. Bacteriol., 181, 493–500 (1999).
  • 24) Kannan, T. R., and Baseman, J. B., Expression of UGA-containing Mycoplasma genes in Bacillus subtilis. J. Bacteriol., 182, 2664–2667 (2000).
  • 25) Scolnick, E., Tompkins, R., Caskey, T., and Nirenberg, M., Release factors differing in specificity for terminator codons. Proc. Natl. Acad. Sci. USA, 61, 768–774 (1968).
  • 26) Karow, M. L., Rogers, E. J., Lovett, P. S., and Piggot, P. J., Suppression of TGA mutations in the Bacillus subtilis spoIIR gene by prfB mutations. J. Bacteriol., 180, 4166–4170 (1998).
  • 27) Sambrook, J., Fritsch, E. F., and Maniatis, T., “Molecular Cloning, a Laboratory Manual” 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
  • 28) Anagnostopoulos, C., and Spizizen, J., Requirements for transformation in Bacillus subtilis. J. Bacteriol., 81, 741–746 (1961).
  • 29) Inaoka, T., Kasai, K., and Ochi, K., Construction of an in vivo nonsense readthrough assay system and functional analysis of ribosomal proteins S12, S4, and S5 in Bacillus subtilis. J. Bacteriol., 183, 4958–4963 (2001).
  • 30) Moriya, S., Tsujikawa, E., Hassan, A. K., Asai, K., Kodama, T., and Ogasawara, N., A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol. Microbiol., 29, 179–187 (1998).
  • 31) Fukuchi, K., Kasahara, Y., Asai, K., Kobayashi, K., Moriya, S., and Ogasawara, N., The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology, 146, 1573–1583 (2000).
  • 32) Petit, M. A., Dervyn, E., Rose, M., Entian, K. D., McGovern, S., Ehrlich, S. D., and Bruand, C., PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol. Microbiol., 29, 261–273 (1998).
  • 33) Uno, M., Ito, K., and Nakamura, Y., Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors. Proc. Natl. Acad. Sci. USA, 99, 1819–1824 (2002).
  • 34) Markovtsov, V., Mustaev, A., and Goldfarb, A., Protein–RNA interactions in the active center of transcription elongation complex. Proc. Natl. Acad. Sci. USA, 93, 3221–3226 (1996).
  • 35) Mustaev, A., Kashlev, M., Lee, J. Y., Polyakov, A., Lebedev, A., Zalenskaya, K., Grachev, M., Goldfarb, A., and Nikiforov, V., Mapping of the priming substrate contacts in the active center of Escherichia coli RNA polymerase. J. Biol. Chem., 266, 23927–23931 (1991).
  • 36) Nudler, E., Avetissova, E., Markovtsov, V., and Goldfarb, A., Transcription processivity: protein–DNA interactions holding together the elongation complex. Science, 273, 211–217 (1996).
  • 37) Wang, Y., Severinov, K., Loizos, N., Fenyo, D., Heyduk, E., Heyduk, T., Chait, B. T., and Darst, S. A., Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J. Mol. Biol., 270, 648–662 (1997).
  • 38) Errington, J., Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol., 1, 117–126 (2003).
  • 39) Mikuni, O., Kawakami, K., and Nakamura, Y., Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coli. Biochimie, 73, 1509–1516 (1991).
  • 40) Adamski, F. M., Donly, B. C., and Tate, W. P., Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA. Nucleic Acids Res., 21, 5074–5078 (1993).
  • 41) Craigen, W. J., Cook, R. G., Tate, W. P., and Caskey, C. T., Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc. Natl. Acad. Sci. USA, 82, 3616–3620 (1985).
  • 42) Lovett, P. S., Ambulos, N. P., Jr., Mulbry, W., Noguchi, N., and Rogers, E. J., UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J. Bacteriol., 173, 1810–1812 (1991).
  • 43) Dahlgren, A., and Ryden-Aulin, M., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie, 82, 683–691 (2000).
  • 44) Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V., Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 407, 340–348 (2000).
  • 45) Campbell, K. M., and Chambliss, G. H., Streptomycin-resistant, asporogenous mutant of Bacillus subtilis. Mol. Gen. Genet., 158, 193–200 (1977).
  • 46) Ohashi, Y., Sugimaru, K., Nanamiya, H., Sebata, T., Asai, K., Yoshikawa, H., and Kawamura, F., Thermo-labile stability of σH (Spo0H) in temperature-sensitive spo0H mutants of Bacillus subtilis can be suppressed by mutations in RNA polymerase β subunit. Gene, 229, 117–124 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.