158
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Mutational Analyses of a Single-Stranded Telomeric DNA Binding Domain of Fission Yeast Pot1: Conflict with X-Ray Crystallographic Structure

, , &
Pages 481-490 | Received 27 Sep 2006, Accepted 09 Nov 2006, Published online: 22 May 2014

  • 1) Vega, L. R., Mateyak, M. K., and Zakian, V. A., Getting to the end: telomerase access in yeast and humans. Nat. Rev. Mol. Cell Biol., 4, 948–959 (2003).
  • 2) Cech, T. R., Beginning to understand the end of the chromosome. Cell, 116, 273–279 (2004).
  • 3) Smogorzewska, A., and de Lange, T., Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem., 73, 177–208 (2004).
  • 4) Blackburn, E. H., Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett., 579, 859–862 (2005).
  • 5) de Lange, T., Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev., 19, 2100–2110 (2005).
  • 6) Blackburn, E. H., and Gall, J. G., A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol., 120, 33–53 (1978).
  • 7) Oka, Y., Shiota, S., Nakai, S., Nishida, Y., and Okubo, S., Inverted terminal repeat sequence in the macronuclear DNA of Stylonychia pustulata. Gene, 10, 301–306 (1980).
  • 8) Klobutcher, L. A., Swanton, M. T., Donini, P., and Prescott, D. M., All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc. Natl. Acad. Sci. USA, 78, 3015–3019 (1981).
  • 9) Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R., A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA, 85, 6622–6626 (1988).
  • 10) Shampay, J., Szostak, J. W., and Blackburn, E. H., DNA sequences of telomeres maintained in yeast. Nature, 310, 154–157 (1984).
  • 11) Sugawara, N. F., DNA Sequences at the Telomeres of the Fission Yeast S. pombe. Ph. D. thesis, Harvard University, Cambridge, MA (1988).
  • 12) Trujillo, K. M., Bunch, J. T., and Baumann, P., Extended DNA binding site in Pot1 broadens sequence specificity to allow recognition of heterogeneous fission yeast telomeres. J. Biol. Chem., 280, 9119–9128 (2005).
  • 13) Harley, C. B., Futcher, A. B., and Greider, C. W., Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460 (1990).
  • 14) Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., and Allshire, R. C., Telomere reduction in human colorectal carcinoma and with ageing. Nature, 346, 866–868 (1990).
  • 15) de Lange, T., Shiue, L., Myers, R. M., Cox, D. R., Naylor, S. L., Killery, A. M., and Varmus, H. E., Structure and variability of human chromosome ends. Mol. Cell. Biol., 10, 518–527 (1990).
  • 16) Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B., Telomere end-replication problem and cell aging. J. Mol. Biol., 225, 951–960 (1992).
  • 17) Baumann, P., and Cech, T. R., Pot1, the putative telomere end-binding protein in fission yeast and humans. Science, 292, 1171–1175 (2001).
  • 18) Bunch, J. T., Bae, N. S., Leonardi, J., and Baumann, P., Distinct requirements for Pot1 in limiting telomere length and maintaining chromosome stability. Mol. Cell. Biol., 25, 5567–5578 (2005).
  • 19) Lei, M., Baumann, P., and Cech, T. R., Cooperative binding of single-stranded telomeric DNA by the Pot1 protein of Schizosaccharomyces pombe. Biochemistry, 41, 14560–14568 (2002).
  • 20) Lei, M., Podell, E. R., Baumann, P., and Cech, T. R., DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature, 426, 198–203 (2003).
  • 21) Smith, D. B., and Johnson, K. S., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 67, 31–40 (1988).
  • 22) Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467 (1977).
  • 23) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 24) Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem., 179, 131–137 (1989).
  • 25) Shimba, N., Torigoe, H., Takahashi, H., Masuda, K., Shimada, I., Arata, Y., and Sarai, A., Comparative thermodynamic analyses of the Fv, Fab* and Fab fragments of anti-dansyl mouse monoclonal antibody. FEBS Lett., 360, 247–250 (1995).
  • 26) Torigoe, H., Nakayama, T., Imazato, M., Shimada, I., Arata, Y., and Sarai, A., The affinity maturation of anti-4-hydroxy-3-nitrophenylacetyl mouse monoclonal antibody: A calorimetric study of the antigen-antibody interaction. J. Biol. Chem., 270, 22218–22222 (1995).
  • 27) Peersen, O. B., Ruggles, J. A., and Schultz, S. C., Dimeric structure of the Oxytricha nova telomere end-binding protein α-subunit bound to ssDNA. Nat. Struct. Biol., 9, 182–187 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.