282
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes in Arabidopsis thaliana

, , , , &
Pages 527-534 | Received 20 Oct 2006, Accepted 13 Nov 2006, Published online: 22 May 2014

  • 1) Barak, S., Tobin, E. M., Andronis, C., Sugano, S., and Green, R. M., All in good time: the Arabidopsis circadian clock. Trends Plant Sci., 5, 517–522 (2000).
  • 2) McClung, C. R., Circadian rhythms in plants: a millennial view. Physiol. Plant., 109, 359–371 (2000).
  • 3) Gardner, M. J., Hubbard, K. E., Hotta, C. T., Dodd, A. N., and Webb, A. A., How plants tell the time. Biochem. J., 397, 15–24 (2006).
  • 4) McClung, C. R., Plant circadian rhythms. Plant Cell, 18, 792–803 (2006).
  • 5) Millar, A. J., Input signals to the plant circadian clock. J. Experimental Botany, 55, 277–283 (2004).
  • 6) Somers, D. E., Clock-associated genes in Arabidopsis: a family affair. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 356, 1745–1753 (2001).
  • 7) Yanovsky, M. J., and Kay, S. A., Living by the calendar: how plants know when to flower. Nat. Rev. Mol. Cell Biol., 4, 265–275 (2003).
  • 8) Alabadi, D., Yanovsky, M. J., Mas, P., Harmer, S. L., and Kay, S. A., Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol., 12, 757–761 (2002).
  • 9) Green, R. M., and Tobin, E. M., Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA, 96, 4176–4179 (1999).
  • 10) Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H. R., Carre, I. A., and Coupland, G., LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental Cell, 2, 629–641 (2002).
  • 11) Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I. A., and Coupland, G., The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 93, 1219–1229 (1998).
  • 12) Strayer, C., Oyama, T., Schultz, T. F., Raman, R., Somers, D. E., Mas, P., Panda, S., Kreps, J. A., and Kay, S. A., Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 289, 768–771 (2000).
  • 13) Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., and Kay, S. A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880–883 (2001).
  • 14) Mizuno, T., and Nakamichi, N., Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol., 46, 677–685 (2005).
  • 15) Eriksson, M. E., Hanano, S., Southern, M. M., Hall, A., and Millar, A. J., Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta, 218, 159–162 (2003).
  • 16) Farre, E. M., Harmer, S. L., Harmon, F. G., Yanovsky, M. J., and Kay, S. A., Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol., 15, 47–54 (2005).
  • 17) Nakamichi, N., Kita, M., Ito, S., Sato, E., Yamashino, T., and Mizuno, T., The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol., 46, 609–619 (2005).
  • 18) Nakamichi, N., Kita, M., Ito, S., Yamashino, T., and Mizuno, T., PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol., 46, 686–698 (2005).
  • 19) Salome, P. A., and McClung, C. R., PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell, 17, 791–803 (2005).
  • 20) Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J., GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J., 18, 4679–4688 (1999).
  • 21) Huq, E., Tepperman, J. M., and Quail, P. H., GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA, 97, 9789–9794 (2000).
  • 22) Hazen, S. P., Schultz, T. F., Pruneda-Paz, J. L., Borevitz, J. O., Ecker, J. R., and Kay, S. A., LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl. Acad. Sci. USA, 102, 10387–10392 (2005).
  • 23) Onai, K., and Ishiura, M., PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells, 10, 963–972 (2005).
  • 24) Kiyosue, T., and Wada, M., LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J., 23, 807–815 (2000).
  • 25) Mas, P., Kim, W. Y., Somers, D. E., and Kay, S. A., Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 426, 567–570 (2003).
  • 26) Somers, D. E., Schultz, T. F., Milnamow, M., and Kay, S. A., ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 101, 319–329 (2000).
  • 27) Covington, M. F., Panda, S., Liu, X. L., Strayer, C. A., Wagner, D. R., and Kay, S. A., ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell, 13, 1305–1315 (2001).
  • 28) Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J., and Wagner, D. R., ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 13, 1293–1304 (2001).
  • 29) Doyle, M. R., Davis, S. J., Bastow, R. M., McWatters, H. G., Kozma-Bognar, L., Nagy, F., Millar, A. J., and Amasino, R. M., The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 419, 74–77 (2002).
  • 30) Kikis, E. A., Khanna, R., and Quail, P. H., ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J., 44, 300–313 (2005).
  • 31) Murakami, M., Yamashino, T., and Mizuno, T., Characterization of circadian-associated APRR3 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 45, 645–650 (2004).
  • 32) Hayama, R., and Coupland, G., Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol., 6, 13–19 (2003).
  • 33) Kaczorowski, K. A., and Quail, P. H., Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell, 15, 2654–2665 (2003).
  • 34) Mas, P., Alabadi, D., Yanovsky, M. J., Oyama, T., and Kay, S. A., Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 15, 223–236 (2003).
  • 35) Yamamoto, Y., Sato, E., Shimizu, T., Nakamich, N., Sato, S., Kato, T., Tabata, S., Nagatani, A., Yamashino, T., and Mizuno, T., Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant Cell Physiol., 44, 1119–1130 (2003).
  • 36) Sato, E., Nakamichi, N., Yamashino, T., and Mizuno, T., Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. Plant Cell Physiol., 43, 1374–1385 (2002).
  • 37) Makino, S., Matsushika, A., Kojima, M., Yamashino, T., and Mizuno, T., The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol., 43, 58–69 (2002).
  • 38) Matsushika, A., Kawamura, M., Nakamura, Y., Kato, T., Murakami, M., Yamashino, T., and Mizuno, T., Characterization of circadian-associated pseudo-response regulators: II. The function of PRR5 and its molecular dissection in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 71, 535–544 (2007).
  • 39) Wang, Z. Y., and Tobin, E. M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 93, 1207–1217 (1998).
  • 40) Matsushika, A., Imamura, A., Yamashino, T., and Mizuno, T., Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol., 43, 833–843 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.