121
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Overproduction of DnaJ in Escherichia coli Improves in Vivo Solubility of the Recombinant Fish-derived Transglutaminase

, &
Pages 1205-1210 | Received 13 Jan 1998, Published online: 22 May 2014

  • 1) Greenberg, C. S., Birckbichler, P. J., and Rice, R. H., Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J., 5, 3071-3077 (1991).
  • 2) Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H., and Motoki, M., Purification and characterization of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem., 53, 2613-2617 (1989).
  • 3) Seki, N., Uno, H., Lee, N., Kimura, I., Toyoda, K., Fujita T., and K. Arai., Transglutaminase activity in Alaska pollack muscle and surimi, and its reaction with myosin B. Nippon Suisan Gakkaishi (in Japanese), 56, 125-132 (1990).
  • 4) Kimura, I., Sugimoto, M., Toyoda, K., Seki, N., Arai K., and Fujita, T., A study on the cross-linking reaction of myosin in kamaboko “suwari” gels. Nippon Suisan Gakkaishi (in Japanese), 57, 1389-1396 (1991).
  • 5) Motoki, M. and Nio, N., Crosslinking between different food proteins by transglutaminase. J. Food. Sci., 48, 561-566 (1983).
  • 6) De Backer-Royer, C., Traoré F., and Meunier, J. C., Polymerization of meat and soybean proteins by human placental calcium-activated factor XIII. J. Agric. Food. Chem., 40, 2052-2056 (1992).
  • 7) Kim, S., Carpenter, J. A., Lanier, T. C., and Wicker, L., Polymerization of beef actomyosin induced by transglutaminase. J. Food. Sci., 58, 473-474 (1993).
  • 8) Yasueda, H., Kumazawa, Y., and Motoki, M., Purification of characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biosci. Biotech. Biochem., 58, 2041-2045 (1994).
  • 9) Yasueda, H., Nakanishi, K., Kumazawa, Y., Nagase, K., Motoki, M., and Matsui, H., Tissue-type transglutaminase from red sea bream (Pagrus major). Eur. J. Biochem., 232, 411-419 (1995).
  • 10) Hartl, F. U. and Martin, J., Molecular chaperones in cellular protein folding. Curr. Opin. Struc. Biol., 5, 92-102 (1995).
  • 11) Hockney, R. C., Recent developments in heterologous protein production in Escherichia coli. Trends. Biotechnol., 12, 456-463 (1994).
  • 12) Blum, P., Velligan, M., Lin, N., and Matin, A., DnaK-mediated alterations in human growth hormone protein inclusion bodies. Bio/Technology, 10, 301-304 (1992).
  • 13) Lee, S. C. and Olins, P. O., Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J. Biol. Chem., 267, 2849-2852 (1992).
  • 14) Kusukawa, N., Yura, T., Ueguchi, C., Akiyama Y., and Ito, K., Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J., 8, 3517-3521 (1989).
  • 15) Kawasaki, Y., Wada, C., and Yura, T., Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in mini-F plasmid replication. Mol. Gen. Genet., 220, 277-282 (1990).
  • 16) Ishiai, M., Wada, C., Kawasaki, Y., and Yura, T., Mini-F plasmid mutants able to replicate in Escherichia coli deficient in the DnaJ heat shock protein. J. Bacteriol., 174, 5597-5603 (1992).
  • 17) Casadaban, M. J., Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol., 104, 541-556 (1976).
  • 18) Sambrook, J., Fritsch, E. F., and Maniatis, T., “Molecular cloning. A laboratory manual“, 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).
  • 19) Gragerov, A., Nudler, E., Komissarova, N., Gaitanaris, G. A., Gottesman, M. E., Nikiforov, V., Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 89, 10341-10344 (1992).
  • 20) Thomas, J. G. and Baneyx, F., Protein folding in the cytoplasm of Escherichia coli. Mol. Microbiol., 21, 1185-1196 (1996).
  • 21) Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M. K., and Hartl, F. U., Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356, 683-689 (1992).
  • 22) Hendrick, J. P., Langer, T., Davis, T. A., Hartl, F. U., Wiedmann, M., Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc. Natl. Acad. Sci. U.S.A., 90, 10216-10220 (1993).
  • 23) Szabo, A., Langer, T., Schroder, H., Flanagan, J., Bukau B., and Hartl, F. U., The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. U.S.A., 91, 10345-10349 (1994).
  • 24) De Crouy-Chanel, A., Kohiyama, M., and Richarme, G., A Novel Function of Escherichia coli Chaperone DnaJ. J. Biol. Chem., 270, 22669-22672 (1995).
  • 25) Yee, V. C., Pedersen, L. C., Le Trong, I., Bishop, P. D., Stenkamp, R. E., and Teller, D. C., Tree-dimensional structure of a transglutaminase. Proc. Natl. Acad. Sci. U.S.A., 91, 7296-7300 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.