73
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

secA341 Mutation Inhibition of Expression of the Bacillus subtilis Protease Gene, aprE

Pages 1784-1787 | Received 19 Mar 1998, Published online: 22 May 2014

  • 1) Miyakawa, Y. and Komano, T., Study on the cell cycle of Bacillus subtilis using temperatue-sensitive mutations. I. Isolation and genetic analysis of the mutations defective in septum formation. Mol. Gen. Genet., 181, 207-214 (1981).
  • 2) Sadaie, Y. and Kada, T., Effect of septum initiation mutation on sporulation and competent cell formation in Bacillus subtilis. Mol. Gen. Genet., 190. 176-178 (1983).
  • 3) Sadaie, Y. and Kada, T., Bacillus subtilis gene involved in cell division, sporulation and exoenzyme secretion. J. Bacteriol., 163, 648-653 (1985).
  • 4) Sadaie, Y., Molecular cloning of a Bacillus subtilis gene involved in cell division, sporulation and exoenzyme secretion. Jpn. J. Genet., 64, 111-119 (1989).
  • 5) Sadaie, Y., Takamatsu, H., Nakamura, K., and Yamane, K., Sequencing reveals similarity of the wild type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene, 98, 101-105 (1991).
  • 6) Takamatsu, H., Fuma, S-I., Nakamura, K., Sadaie, Y., Shinkai, A., Matsuyama, S. I., Mizushima, S., and Yamane, K., In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. J. Bacteriol., 174, 4308-4316 (1992).
  • 7) Takamatsu, H., Nakane, A., Ogura, A., Sadaie, Y., Nakamura, K., and Yamane, K., A truncated Bacillus subtilis SecA protein consisting of the N-terminal 234 amino acid residues forms a complex with Escherichia coli SecA51(ts) protein and complements the protein translocation defect of the secA51 mutant. J. Biochem., 116, 1287-1294 (1994).
  • 8) Takamatsu, H., Nakane, A., Sadaie, Y., Nakamura, K., and Yamane, K., The rapid degradation of mutant secA protein in the Bacillus subtilis secA341(ts) mutant causes a protein translocation defect in the cell. Biosci. Biotech. Biochem., 58, 1845-1850 (1994).
  • 9) Henner, D. J., Ferrari, E., Perego, M., and. Hoch, J. A., Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J. Bacteriol., 170, 296-300 (1988).
  • 10) Kallio, P. T., Fegelson, J. E., Hoch, J. A., and Strauch, M. A., The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem., 266, 13411-13417 (1991).
  • 11) Strauch, M. A., Spiegelman, G. B., Perego, M., Johnson, W. C., Burbulys, D., and Hoch, J. A., Transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO. J., 8, 1615-1621 (1989).
  • 12) Gaur, N. K., Oppenheim, J., and Smith, I., The Bacillus subtilis sin gene, a regulator of alternate development process, codes for a DNA binding protein. J. Bacteriol., 173, 678-686 (1991).
  • 13) Ferrari, E., Henner, D. J., Perego, M., and Hoch, J. A., Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J. Bacteriol., 170, 289-295 (1988).
  • 14) Perego, M., Spiegelman, G. B., and Hoch, J. A., Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol., 2, 689-699 (1988).
  • 15) Strauch, M., Webb, V., Spiegelman, G., and Hoch, J. A., The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. USA., 87, 1801-1805 (1990).
  • 16) Strauch, M. A. and Hoch, J. A., Transition state regulator: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol., 7, 337-342 (1993).
  • 17) Yang, M., Shimotsu, H., Ferrari, E., and Henner, D. J., Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol., 169, 434-437 (1987).
  • 18) Tanaka, T., Kawata, M., Nagami, Y., and Uchiyama, H., prtR enhances the mRNA level of the Bacillus subtilis extracellular proteases. J. Bacteriol., 169, 33044-3055 (1987).
  • 19) Henner, D. J., Yang, M., and Ferrari, E., Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of the two component signaling systems. J. Bacteriol., 170, 5102-5104 (1988).
  • 20) Kunst, F., Debarbouille, M., Musadek, T., Young, M., Mauel, C., Karamata, D., Klier, A., Rapoport, G., and Dedonder, R., Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol., 170, 5093-5101 (1988).
  • 21) Tanaka, T. and Kawata, M., Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol., 170, 3593-3600 (1988).
  • 22) Steinmetz, M., Kunst, F., and Dedonder, R., Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Identification of the sacU h, amyB and pap mutations. Mol. Gen. Genet., 148, 281-285 (1976).
  • 23) Shimotsu, H. and Henner, D. J., Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol., 168, 380-388 (1986).
  • 24) Dahl, M. K., Msadek, T., Kunst, F., and Rapoport, G., Phosphorylation state of the DegU responsive regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J. Biol. Chem., 267, 14509-14514 (1992).
  • 25) Ogura, M., Kawata-Mukai, M., Itaya, M., Takio, K., and Tanaka, T., Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J. Bacteriol., 176, 5673-5680 (1994).
  • 26) Mukai, K., Kawata-Mukai, M., and Tanaka, T., Stabilization of phosphorylated Bacillus subtilis DegU by DegR. J. Bacteriol., 174, 7954-7962 (1992).
  • 27) Ogura, M. and Tanaka, T., Expression of alkaline protease gene in Bacillus subtilis mutants that lack positive regulatory genes degR, degQ, senR, tenA, and proB. Biosci. Biotech. Biochem., 61, 372-3374 (1997).
  • 28) Ogura, M. and Tanaka, T., Transcription of Bacillus subtilis degR is σD dependent and suppressed by multicopy proB through σD. J. Bacteriol., 178, 216-222 (1996).
  • 29) Mirel, D. B. and Chamberlin, M. J., The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J. Bacteriol., 171, 3095-3101 (1989).
  • 30) Mirel, D. B., Lauer, P., and Chamberlin, M. J., Identification of flagellar synthesis regulatory and structural genes in a σD-dependent operon of Bacillus subtilis. J. Bacteriol., 176, 4492-4500 (1994).
  • 31) Predich, M., Nair, G., and Smith, I., Bacillus subtilis early sporulation genes kinA, spo0F and spo0A are transcribed by the RNA polymerase containing σH. J. Bacteriol., 174, 2771-2778 (1992).
  • 32) Kunst, F. and Rapoport, G., Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol., 177, 2403-2407 (1995).
  • 33) Leighton, T. and Doi, R. H., The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. J. Biol. Chem., 246, 3189-3195 (1971).
  • 34) Schaeffer, P., Millet, J., and Aubert, J. P., Catabolite repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA, 54, 704-711 (1965).
  • . 1972.
  • 36) Wang, P-Z. and Doi, R. H., Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. J. Biol. Chem., 259,8619-8625 (1984).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.