86
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Expression of a Functional Single-chain Antibody against GA24/19 in Transgenic Tobacco

, , , , &
Pages 779-783 | Received 11 Jan 1999, Accepted 08 Feb 1999, Published online: 22 May 2014

  • . 1983. p. 253.
  • 2) Artsaenko, O., Peisker, M., Zur Nieden, U., Fiedler, U., Weiler, E. W., Müntz, K., and Conrad, U., Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J., 8, 745-750 (1995).
  • 3) Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H-P., Müntz, K., and Conrad, U., Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J., 16, 4489-4496 (1997).
  • 4) Huston, J. S., Mudgett-Hunter, M., Tai, M.-S., McCartney, J., Warren, F., Haber, E., and Oppermann, H., Protein engineering of single-chain Fv analogs and fusion proteins. Method in Enzymology, 203, 46-88 (1991).
  • 5) Johnson, S. and Bird, R. E., Construction of single-chain Fv derivatives of monoclonal antibodies and their production in Escherichia coli. Method in Enzymology, 203, 88-98 (1991).
  • 6) Graebe, J. E., Gibberellin biosynthesis and control. Ann. Rev. Plant Physiol., 38, 419-465 (1987).
  • 7) Nakayama, I., Kamiya, Y., Kobayashi, M., Abe, H., and Sakurai, A., Effects of a plant-growth regulator, prohexadione, on the biosynthesis of gibberellins in cell-free system derived from immature seeds. Plant Cell Physiol., 31, 1183-1190 (1990).
  • 8) Appleford, N. E. J. and Lenton, J. R., Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rht3 dwarfing alleles. Planta, 183, 229-236 (1991).
  • 9) Fujioka, S., Yamane, H., Spray, C. R., Gaskin, P., MacMillan, J., Phinney, B. O., and Takahashi, N., Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol., 88, 1367-1372 (1988).
  • 10) Gilmour, S. J., Zeevaart, J. A. D., Schwenen, L., and Graebe, J. E., Gibberellin metabolism in cell-free extracts from spinach (Spinacia oleracea) leaves in relation to photoperiod. Plant Physiol., 82, 190-195 (1986).
  • 11) Kurogochi, S., Murofushi, N., Ota, Y., and Takahashi, N., Gibberellins and inhibitors in the rice plant. Agric. Biol. Chem., 42, 207-208 (1978).
  • 12) Kurogochi, S., Murofushi, N., Ota, Y., and Takahashi, N., Identification of gibberellins in the rice plant and quantitative changes of gibberellin A19 throughout its life cycle. Planta, 146, 185-191 (1979).
  • 13) Metzger, J. D. and Zeevaart, J. A. D., Effect of photoperiod on the levels of endogenous gibberellins in spinach as measured by combined gas chromatography-selected ion current monitoring. Plant Physiol., 66, 844-846 (1980).
  • 14) Talon, M., Zeevaart, J. A. D., and Gage, D. A., Identification of gibberellins in spinach and effects of light and darkness on their levels. Plant Physiol., 97, 1521-1526 (1991).
  • 15) Wu, K., Li, L., Gage, D. A., and Zeevaart, J. A. D., Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol., 110, 547-554 (1996).
  • 16) Xu, Y-L., Gage, D. A., and Zeevaart, J. A. D., Gibberellins and stem growth in Arabidopsis thaliana. Plant Physiol., 114, 1471-1476 (1997).
  • 17) Yang, Y-Y., Yamaguchi, I., Takeno-Wada, K., Suzuki, Y., and Murofushi, N., Metabolism and translocation of gibberellins in seedling of Pharbitis nil (I). Effect of photoperiod on stem elongation and endogenous gibberellins in cotyledons and their phloem exudates. Plant Cell Physiol., 36, 221-227 (1995).
  • . 1993.
  • 19) Suzuki, Y., Shimada, N., Niwa, R., Yokoi, M., Nakajima, M., Murofushi, N., and Yamaguchi, I., Preparation and application of anti-idiotypic antibody against anti-GA4 antibody. Biosci. Biotechnol. Biochem., 63, 648-654 (1999).
  • 20) Weiler, E. W. and Wieczorek, U., Determination of femtomole quantities of gibberellic acid by radioimmunoassay. Planta, 152, 159-167 (1981).
  • 21) Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W., GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6, 3901-3907 (1987).
  • 22) Schouten, A., Roosien, J., Van Engelen, F. A., De Jong, G. A. M., Borst-Vrenssen, A. W. M., Zilverentant, J. F., Bosch, D., Stiekema, W. J., Gommers, F. J., Schots, A., and Bakker, J., The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol., 30, 781-793 (1996).
  • 23) Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T., A simple and general method for transferring genes into plants. Science, 227, 1229-1231 (1985).
  • 24) Kari, B., Lussenhop, N., Goertz, R., Wabuke-Bunoti, M., Radeke, R., and Gehrz, R., Characterization of monoclonal antibodies reactive to several biochemically distinct human cytomegalovirus glycoprotein complexes. J. Virology, 60, 345-352 (1986).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.