61
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Group I Intron Located in PR Protein Homologue Gene in Youngia japonica

, , , &
Pages 606-609 | Received 10 Sep 1999, Accepted 10 Nov 1999, Published online: 22 May 2014

  • 1) Cech, T. R., Self-splicing of group I introns. Annu. Rev. Biochem., 59, 543-568 (1990).
  • 2) Belfort, M. and Perlman, P. S., Mechanisms of intron mobility. J. Biol. Chem., 270, 30237-30240 (1995).
  • 3) Dujon, B., Group I introns as mobile genetic elements: facts and mechanic speculations—a review. Gene, 82, 91-114 (1989).
  • 4) Lambowitz, A. M. and Belfort, M., Introns as mobile genetic elements. Annu. Rev. Biochem., 62, 587-622 (1993).
  • 5) Adams, K. L., Clements, M. J., and Vaughn, J. C., The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J. Mol. Evol., 46, 689-696 (1998).
  • 6) Bhattacharya, D., Friedl, T., and Damberger, S., Nuclear-encoded rRNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae. Mol. Biol. Evol., 13, 978-989 (1996).
  • 7) Cho, Y., Qiu, Y.-L., Kuhlman, P., and Palmer, J. D., Explosive invasion of plant mitochondria by a group I intron. Proc. Natl. Acad. Sci. USA, 95, 14244-14249 (1998).
  • 8) Hibbett, D. S., Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol. Biol. Evol., 13, 903-917 (1996).
  • 9) Nishida, H. and Sugiyama, J., A common group I intron between a plant parasitic fungus and its host. Mol. Biol. Evol., 12, 883-886 (1995).
  • 10) Vaughn, J. C., Mason, M. T., Sper-Whitis, G. L., Kuhlman, P., and Palmer, J. D., Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J. Mol. Evol., 41, 563-572 (1995).
  • 11) Nishida, H., Blanz, P. A., and Sugiyama, J., The higher fungus Protomyces inouyei has two group I introns in the 18S rRNA gene. J. Mol. Evol., 37, 25-28 (1993).
  • 12) Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., Basic local alignment search tool. J. Mol. Biol., 215, 403-410 (1990).
  • 13) Brenner, E. D., Lambert, K. N., Kaloshian, I., and Williamson, V. M., Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root. Plant Physiol., 118, 237-247 (1998).
  • 14) Karrer, E. E., Beachy, R. N., and Holt, C. A., Cloning of tobacco genes that elicit the hypersensitive response. Plant Mol. Biol., 36, 681-690 (1998).
  • 15) Theerasilp, S. and Kurihara, Y., Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J. Biol. Chem., 264, 11536-11539 (1988).
  • 16) Theerasilp, S., Hitotsuya, H., Nakajo, S., Nakaya, K., Nakamura, Y., and Kurihara, Y., Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. J. Biol. Chem., 264, 6655-6659 (1989).
  • 17) Hung, C. H., Lee, M. C., and Lin, J. Y., Nucleotide sequence of cDNA for Acacia confusa trypsin inhibitor and implication of post-translation processing. Biochem. Biophys. Res. Commun., 184, 1524-1528 (1992).
  • 18) Jofuku, K. D., and Goldberg, R. B., Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants. Plant Cell, 1, 1079-1093 (1989).
  • 19) Leah, R. and Mundy, J., The bifunctional alpha-amylase/subtilisin inhibitor of barley: nucleotide sequence and patterns of seed-specific expression. Plant Mol. Biol., 12, 673-682 (1989).
  • 20) Milligan, S. B. and Gasser, C. S., Nature and regulation of pistil-expressed genes in tomato. Plant Mol. Biol., 28, 691-711 (1995).
  • 21) Ohtsubo, K. and Richardson, M., The amino acid sequence of a 20 kDa bifunctional subtilisin/alpha-amylase inhibitor from bran of rice (Oryza sativa L.) seeds. FEBS Lett., 309, 68-72 (1992).
  • 22) Augur, C., Stiefel, V., Darvill, A., Albersheim, P., and Puigdomenech, P., Molecular cloning and pattern of expression of an α-L-fucosidase gene from pea seedlings. J. Biol. Chem., 270, 24839-24843 (1995).
  • 23) Masuda, Y., Nirasawa, S., Nakaya, K., and Kurihara, Y., Cloning and sequencing of cDNA encoding a taste-modifying protein, miraculin. Gene, 161, 175-177 (1995).
  • 24) Tai, H., McHenry, L., Fritz, P. J., and Furtek, D. B., Nucleic acid sequence of a 21 kDa cocoa seed protein with homology to the soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Plant Mol. Biol., 16, 913-915 (1991).
  • 25) Maeda, K., The complete amino acid sequence of the endogenous α-amylase inhibitor in wheat. Biochim. Biophys. Acta, 871, 250-256 (1986).
  • 26) Thompson, J. D., Higgins, D. G., and Gilson, T. J., CLUSTAL W: improving the sensitivity of progressive sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4553-4559 (1994).
  • 27) Kumar, S., Tamura, K., and Nei, M., MEGA: Molecular Evolutionary Genetics Analysis, version 1.01, The Pennsylvania State University, University Park (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.