298
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Monoamine-dependent Production of Reactive Oxygen Species Catalyzed by Pseudoperoxidase Activity of Human Hemoglobin

, , &
Pages 1224-1232 | Received 17 Oct 2001, Accepted 30 Jan 2002, Published online: 22 May 2014

  • 1) Alayash, A. I., Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nature Biotechnol., 17, 545-549 (1999).
  • 2) Darley-Usmar, V. W. and Radomski, R., Free radicals in the vasculature-the good, the bad, and the ugly. Biochemist (Bulletin of the Biochemical Society), 13-17 (1994).
  • 3) Motterlini, R., Foresti, R., Vandegriff, K. D., Intagliatta, M., and Winslow, R. W., Oxidative stress response in vascular endothelial cells exposed to acellular hemoglobin solution. Am. J. Physiol., 269, H648-H655 (1995).
  • 4) Alayash, A. I. and Cashon, R. E., Hemoglobin and free radicals, implications for the development of a safe blood substitute. Mol. Med. Today, 1, 122-127 (1995).
  • 5) King, N. K. and Winfield, M. E., The mechanism of metmyogloblin oxidation. J. Biol. Chem., 238, 1520-1528 (1963).
  • 6) Patel, R. P., Svistunenko, D. A., Darley-Usmar, V. M., Symons, M. C., and Wilson, M. T., Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals. Free Radic. Res., 25, 117-123 (1996).
  • 7) Svistunenko, D. A., Patel, R. P., Voloshenko, S. V., and Wilson, M. T., The globin-based radical of ferryl hemoglobin is detected in normal human blood. J. Biol. Chem., 272, 7114-7121 (1997).
  • 8) Bunn, H. F. and Forget, B. G., Hemoglobin: molecular genetic ad clinical aspects, W. B. Saunders Co., Philadelphia (1986).
  • 9) Giulivi, C. and Davies, K. J., A novel antioxidant role for hemoglobin. The comproportionation of ferrylhemoglobin with oxyhemoglobin. J. Biol. Chem., 265, 19453-19460 (1990).
  • 10) Yamada, T., Volkmer, C., and Grisham, M. B., The effects of sulfasalazine metabolites on hemoglobin-catalyzed lipid peroxidation. Free Radic. Biol. Med., 10, 41-49 (1991).
  • 11) Osawa, Y., Darbyshire, J. F., Meyer, C. A., and Alayash, A. I., Differential susceptibilities of the prosthetic heme of hemoglobin-based red cell substitutes. Implications in the design of safer agents. Biochem. Pharmacol., 46, 2299-2305 (1993).
  • 12) Kawano, T. and Hosoya, H., Oxidative burst by acellular haemoglobin and neurotransmitters. Medical Hypotheses (in press).
  • 13) Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., and Muto, S., Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction. Plant Cell Physiol., 39, 721-730 (1998).
  • 14) Kawano, T. and Muto, S., Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot., 51, 685-693 (2000).
  • 15) Kawano, T., Pinontoan, R., Uozumi, N., Miyake, C., Asada, K., Kolattukudy, P. E., and Muto, S., Aromatic monoamine-induced immediate oxidative burst leading to an increase in cytosolic Ca2+ concentration in tobacco suspension culture. Plant Cell Physiol., 41, 1251-1258 (2000).
  • 16) Kawano, T., Pinontoan, R., Uozumi, N., Morimitsu, Y., Miyake, C., Asada, K., and Muto S., Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: mechanism for oxidative burst mediating Ca2+ movements. Plant Cell Physiol., 41, 1259-1266 (2000).
  • 17) Nakano, M., Sugioka, K., Ushijima, Y., and Goto, T., Chemiluminescence probe with Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one, for estimating the ability of human granulocytes to generate O2ߦ−. Anal. Biochem., 159, 363-369 (1986).
  • 18) Pietri, S., Culcasi, M., Stella, L., and Cozzone, P. J., Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. A real-time continuous-flow ESR study. Eur. J. Biochem., 193, 845-854 (1990).
  • 19) Togashi, H., Shinzawa, H., Yong, H., Takahashi, T., Noda, H., Oikawa, K., and Kamada H., Ascorbic acid radical, superoxide, and hydroxyl radical are detected in reperfusion injury of rat liver using electron spin resonance spectroscopy. Arch. Biochem. Biophys., 308, 1-7 (1994).
  • 20) Miller, Y. I., Altamentova, S. M., and Shaklai, N., Oxidation of low-density lipoprotein by hemoglobin stems from a heme-initiated globin radical: antioxidant role of heptoglobin. Biochemistry, 36, 12189-12198 (1997).
  • 21) Dunford, H. B., One-electron oxidations by peroxidases. Xenobiotica, 25, 725-733 (1995).
  • 22) Matsuura, T., Miyai, K., Trakulnaleamsai, S., Yomo, T., Shimai, Y., Miki, S., Yamamoto, K., and Urabe, I., Evolutionary molecular engineering by random elongation mutagenesis. Nature Biotechnol., 17, 58-61 (1999).
  • 23) Renganathan, V. and Gold, M. H., Spectoral characterization of the oxidized status of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium.Biochemistry, 25, 1626-1631 (1986).
  • 24) Schulz, C. E., Rutter, R., Sage, J. T., Debrunner, P. G., and Hager, L. P., Mossbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates. Biochemistry, 23, 4743-454 (1984).
  • 25) Rutter, R. and Hager, L. P., The detection of two electron paramagnetic resonance radical signals associated with chloroperoxidase compound I. J. Biol. Chem., 257, 7958-7961 (1982).
  • 26) Marquez, L. A., Quitoriano, M., Zilinskas, B. A., and Dunford, H. B., Kinetic and spectral properties of pea cytosolic ascorbate peroxidase. FEBS Lett., 389, 153-156 (1996).
  • 27) Hsuanyu, Y. C. and Dunford, H. B., Reduction of prostaglandin H synthase compound II by phenol and hydroquinone, and the effect of indomethacin. Arch. Biochem. Biophys., 292, 213-220 (1992).
  • 28) Lang, G., Spartalian, K., and Yonetani, T., Mossbauer spectroscopic study of compound ES of cytochrome c peroxidase. Biochim. Biophys. Acta, 451, 250-258 (1976).
  • 29) Ronnberg, M., Lambeir, A. M., Ellfolk, N., and Dunford, H. B., A rapid-scan spectrometric and stopped-flow study of compound I and compound II of Pseudomonas cytochrome c peroxidase. Arch. Biochem. Biophys., 236, 714-719 (1985).
  • 30) Davies, M. J., Identification of a globin free radical in equine myoglobin treated with peroxides. Biochim. Biophys. Acta, 1077, 86-90 (1991).
  • 31) Davies, M. J., and Puppo, A., Identification of the site of the globin-derived radical in leghaemoglobins. Biochim. Biophys. Acta, 1202, 182-188 (1993).
  • 32) Ivancich, A., Jouve, H. M., Sartor, B., and Gaillard, J., EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates. Biochemistry, 36, 9356-9364 (1997).
  • 33) Moore, K. P., Holt, S. G., Patel, R. P., Svistunenko, D. A., Zackert, W., Goodier, D., Reeder, B. J., Clozel, M., Anand, R., Cooper, C. E., Morrow, J. D., Wilson, M. T., Darley-Usmar, V., and Roberts, L. J., A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J. Biol. Chem., 273, 31731-31737 (1998).
  • 34) Cashon, R. E. and Alayash, A. I., Reaction of human hemoglobin Hb A0 and two cross-linked derivatives with hydrogen peroxide: differential behavior of the ferryl intermediate. Arch. Biochem. Biophys., 316, 461-469 (1995).
  • 35) Goldman, D. W., Breyer, R. J., Yeh, D., Brockner Ryan, B. A., and Alayash, A. I., Acellular hemoglobin-mediated oxidative stress toward endothelium: a role for ferryl iron. Am. J. Physiol., 44, H1046-1053 (1998).
  • 36) Golly, I. and Hlavica, P., The role of hemoglobin in the N-oxidation of 4-chloroaniline. Biochim. Biophys. Acta, 760, 69-76 (1983).
  • 37) Kuo, C. F. and Fridovich, I., Stimulation of the activity of horseradish peroxidase by nitrogenous compounds. J. Biol. Chem., 263, 3811-3817 (1988).
  • 38) Mori, I. C., Pinontoan, R., Kawano, T., and Muto, S., Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba.Plant Cell Physiol., 42, 1383-1388.
  • 39) Kawano, T., Sahashi, N., Uozumi, N., and Muto, S., Involvement of apoplastic peroxidase in the chitosaccharide-induced immediate oxidative burst and a cytosolic Ca2+ increase in tobacco suspension culture. Plant Peroxidase Newslett., 14, 117-124 (2000).
  • 40) Rutter, R., Valentine, M., Hendrich, M. P., Hager, L. P., and Debrunner, P. G., Chemical nature of the porphyrin pi cation radical in horseradish peroxidase compound I. Biochemistry, 22, 4769-4774 (1983).
  • 41) Giulivi, C. and Cadenas, E., The reaction of ascorbic acid with different heme iron redox states of myoglobin. Antioxidant and prooxidant aspects. FEBS Lett., 332, 287-290 (1993).
  • 42) Moreau, S., Puppo, A., and Davies, M. J., The reactivity of ascorbate with different redox states of leghaemoglobin. Phytochemistry, 39, 1281-1286 (1995).
  • 43) Pinontoan, R., Krystofava, S., Kawano, T., Mori, I. C., Tsuji, F., Iida, H., and Muto, S., Phenylethylamine induces an increase in cytosolic Ca2+ in yeast. Biosci. Biotechnol. Biochem., 66, 839-844 (2002).
  • 44) Heber, U., Miyake, C., Mano, J., Ohno, C., and Asada, K., Monodehydroascorbate radical detected by electron paramagnetic resonance spectrometry is a sensitive probe of oxidative stress in intact leaves. Plant Cell Physiol., 37, 1066-1072 (1996).
  • 45) D'Agnillo, F. and Chang, T. M., Absence of hemoprotein-associated free radical events following oxidant challenge of crosslinked hemoglobin-superoxide dismutase-catalase. Free. Radic. Biol. Med., 24, 906-912 (1998).
  • 46) D'Agnillo, F. and Chang, T. M., Polyhemoglobin-superoxide dismutase-catalase as a blood substitute with antioxidant properties. Nature Biotechnol., 16, 667-672 (1998).
  • 47) Gunther, M. R., Tschirret-Guth, R. A., Witkowska, H. E., Fann, Y. C., Barr, D. P., Ortiz De Montellano, P. R., and Mason, R. P., Site-specific spin trapping of tyrosine radicals in the oxidation of metmyoglobin by hydrogen peroxide. Biochem. J., 330, 1293-299 (1998).
  • 48) Harada, K., Tamura, M., and Yamazaki, I., The 2-electron reduction of sperm whale ferryl myoglobin by ethanol. J. Biochem., 100, 499-504 (1986).
  • 49) Puppo, A., Monny, C., and Davies, M. J., Glutathione-dependent conversion of ferryl leghaemoglobin into the ferric form: a potential protective process in soybean (Glycine max) root nodules. Biochem. J., 289, 435-438 (1993).
  • 50) McLeod, L. L. and Alayash, A. I., Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia-reoxygenation. Am. J. Physiol., 277, H92-99 (1999).
  • 51) Gorbunov, I. V. V., Elsayed, N. M., Kisin, E. R., Kozlov, A. V., and Kagan, V. E., Air blast-induced pulmonary oxidative stress: interplay among hemoglobin, antioxidants, and lipid peroxidation. Am. J. Physiol., 272, L320-334 (1997).
  • 52) Kawano, T., Muto, S., Adachi, M., Hosoya H., and Lapeyrie, F., Spectroscopic evidence that salicylic acid converts a temporal inactive form of horseradish peroxidase (Compound III) to the irreversibly inactivated verdohemoprotein (P-670). Biosci. Biotechnol. Biochem., 66, 646-650 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.