394
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Transcriptome Analysis of Acetate Metabolism in Corynebacterium glutamicum Using a Newly Developed Metabolic Array

, , , , , , , & show all
Pages 1337-1344 | Received 09 Jan 2002, Accepted 04 Feb 2002, Published online: 22 May 2014

  • 1) Kinoshita, S. and Nakayama, K., Amino acids. In “Primary products of metabolism”, ed. Rose, A. H., Academic Press, London, New York, San Francisco, pp. 209-261 (1978).
  • 2) Oka, T., Amino acids, production processes. In “Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation”, eds. Flickinger, M. C. and Drew, S. W., John Wiley & Sons, Inc, pp. 89-100 (1999).
  • 3) Demain, A. L., Microbial biotechnology. Trends Biotechnol., 18, 26-31 (2000).
  • 4) Schena, M., Shalon, D., Davis, R. W., and Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470 (1995).
  • 5) Lucchini, S., Thompson, A., and Hinton, J. C. D., Microarrays for microbiologists. Microbiology, 147, 1403-1414 (2001).
  • 6) Khodursky, A. B., Peter, B. J., Cozzarelli, N. R., Botstein, D., Brown, P. O., and Yanofsky, C., DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 97, 12170-12175 (2000).
  • 7) Oh, M. K. and Liao, J. C., Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol. Prog., 16, 278-286 (2000).
  • 8) Ye, R. W., Tao, W., Bedzyk, L., Young, T., Chen, M., and Li, L., Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol., 182, 4458-4465 (2000).
  • 9) Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C. M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T., and Fujita, Y., Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res., 29, 683-692 (2001).
  • 10) Loos, A., Glanemann, C., Willis, L. B., O'Brien, X. M., Lessard, P. A., Gerstmeir, R., Guillouet, S., and Sinskey, A. J., Development and validation of Corynebacterium DNA microarrays. Appl. Environ. Microbiol., 67, 2310-2318 (2001).
  • 11) Nakagawa, S., Mizoguchi, H., Ando, S., Hayashi, M., Ochiai, K., Yokoi, H., Tateishi, N., Senoh, A., Ikeda, M., and Ozaki, A., Eur. Patent 1108790 (June 20, 2001).
  • 12) Ohnishi, J., Mitsuhashi, S., Hayashi, M., Ando, S., Yokoi, H., Ochiai, K., and Ikeda, M., A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl. Microbiol. Biotechnol., 58, 217-223 (2002).
  • 13) Wendisch, V. F., Spies, M., Reinscheid, D. J., Schnicke, S., Sahm, H., and Eikmanns, B. J., Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch. Microbiol., 168, 262-269 (1997).
  • 14) Reinscheid, D. J., Schnicke, S., Rittmann, D., Zahnow, U., Sahm, H., and Eikmanns, B. J., Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology, 145, 503-513 (1999).
  • 15) Katsumata, R., Ozaki, A., Oka, T., and Furuya, A., Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol., 159, 306-311 (1984).
  • 16) Eikmanns, B. J., Metzger, M., Reinscheid, D., Kircher, M., and Sahm, H., Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl. Microbiol. Biotechnol., 34, 617-622 (1991).
  • 17) Sambrook, J., and Russell, D. W., Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2001).
  • 18) Mangan, J. A., Sole, K. M., Mitchison, D. A., and Butcher, P. D., An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acids Res., 25, 675-676 (1997).
  • 19) Wilson, M., DeRisi, J., Kristensen, H., Imboden, P., Rane, S., Brown, P. O., and Schoolnik, G. K., Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. U.S.A., 96, 12833-12838 (1999).
  • 20) Wendisch, V. F., de Graaf, A. A., Sahm, H., and Eikmanns, B. J., Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol., 182, 3088-3096 (2000).
  • 21) Cronan, J. E. and Jr.; Laporte, D., Tricarboxylic acid cycle and glyoxylate bypass. In “Escherichia coli and Salmonella”, ed. Neidhardt, F. C., ASM press, Washington, D. C., pp. 206-216 (1999).
  • 22) Riedel, C., Rittmann, D., Dangel, P., Mockel, B., Petersen, S., Sahm, H., and Eikmanns, B. J., Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J. Mol. Microbiol. Biotechnol., 3, 573-583 (2001).
  • 23) Gourdon, P., Baucher, M. F., Lindley, N. D., and Guyonvarch, A., Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl. Environ. Microbiol., 66, 2981-2987 (2000).
  • 24) Carter-Muenchau, P. and Wolf, R. E., Growth-rate-dependent regulation of 6-phosphogluconate dehydrogenase level mediated by an anti-Shine-Dalgarno sequence located within the Escherichia coli gnd structural gene. Pro. Natl. Acad. Sci. U.S.A., 86, 1138-1142 (1989).
  • 25) Eikmanns, B. J., Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phospholycerate kinase, and triosephosphate isomerase. J. Bacteriol., 174, 6076-6086 (1992).
  • 26) Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S., Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J. Biol. Chem., 275, 14031-14037 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.