293
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Growth-promoting Activity of Pyrazinoic Acid, a Putative Active Compound of Antituberculosis Drug Pyrazinamide, in Niacin-deficient Rats through the Inhibition of ACMSD Activity

, &
Pages 1435-1441 | Received 27 Sep 2001, Accepted 07 Mar 2002, Published online: 22 May 2014

  • 1) McKenzie, D., Malone, S., Kushner, S., Oleson, J. J., and Subbarow, Y., The effect of nicotinic acid on experimental tuberculosis of white mice. J. Lab. Clin. Med., 33, 1249-1253 (1948).
  • 2) World Health Organization, WHO report on the tuberculosis epidemic; stop TB at the source. Tuberculosis Program, World Health Organization, Geneva, Switzerland, 1995.
  • 3) Konno, K., Feldmann, F. M., and McDermott, W., Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis., 95, 461-469 (1967).
  • 4) Trivedi, S. S. and Desai, S. G., Pyrazinamidase activity of Mycobacterium tuberculosis-a test sensitivity to pyrazinamide. Tubercle, 68, 221-224 (1987).
  • 5) Scorpio, A. and Zhang, Y., Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med., 2, 662-667 (1996).
  • 6) Scorpio, A., Lindholm-Levy, P., Heifets, L., Gilman, R., Siddiqi, S., Cynamon, M., and Zhang, Y., Characterization of pncA mutations in pyrazinamide-resistant Mycobacterirum tuberculosis. Antimicrob. Agents Chemother., 41, 540-543 (1997).
  • 7) McCune, R. M., Tompsett, R., and McDermott, W., The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. J. Exp. Med., 104, 763-802 (1956).
  • 8) Tarshis, M. S. and Weed, W. A., Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three solid media. Am. Rev. Tuberc., 67, 391-395 (1953).
  • 9) Shibata, K., Effects of dietary pyrazinamide on the growth of weaning rats fed with a nicotinic acid-free and tryptophan-limited diet. Agric. Biol. Chem., 55, 3111-3112 (1991).
  • 10) Shibata, K., Effects of pyrazinamide on tryptophan-niacin conversion in rats. Agric. Biol. Chem., 54, 2463-2464 (1990).
  • 12) Hayakawa, T., Shibata, K., and Iwai, K., Purification and some properties of nicotinate phosphoribosyltransferase from hog liver. Agric. Biol. Chem., 48, 445-453 (1984).
  • 13) Nasu. S., Yamaguchi, K., Sakakibara, S., Imai, H., and Ueda, I., The effect of pyrazines on the metabolism of tryptophan and nicotinamide adenine dinucleotide in the rat. Evidence of the formation of a potent inhibitor of aminocarboxymuconate-semialdehyde decarboxylase from pyrazinamide. Biochim. Biophys. Acta, 677, 109-119 (1981).
  • 14) Pullman, M. E. and Colowick, S. P., Preparation of 2- and 6-pyridones of N1-methylnicotinamide. J. Biol. Chem., 206, 121-127 (1954).
  • 15) Shibata, K., Kawada, T., and Iwai, K., Simultaneous micro-determination of nicotinamide and its major metabolites, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-3-pyridone-4-carboxamide, by high-performance liquid chromatography. J. Chromatogr., 424, 23-28 (1988).
  • 16) Shibata, K. and Murata, K., Blood NAD as an index of niacin nutrition. Nutr. Int., 2, 177-181 (1986).
  • 17) Shibata, K., The metabolism of niacin in each organ and the biological method for assessing the nutritional status of niacin in the rat. Vitamins (Japan), 61, 39-56 (1987).
  • 18) Shibata, K. and Tanaka, K., Simple measurement of blood NADP and blood levels of NAD and NADP in humans. Agric. Biol. Chem., 50, 2941-2942 (1986).
  • 19) Shibata, K., Ultramicro-determination of N1-methylnicotinamide in urine by high-performance liquid chromatography. Vitamins, 61, 599-604 (1987).
  • 20) Shibata, K., Fluorimetric micro-determination of kynurenic acid, an endogenous blocker of neurotoxicity, by high-performance liquid chromatography. J. Chromatogr., 430, 376-380 (1988).
  • 21) Shibata, K. and Onodera, M., Simultaneous high-performance liquid chromatographic measurement of xanthurenic acid and 3-hydroxyanthranilic acid in urine. Biosci. Biotechnol. Biochem., 56, 974 (1992).
  • 22) Ichiyama, A., Nakamura, S., Kawai, H., Honjo, T., Nishizuka, Y., Hayaishi, O., and Senoh, T., Studies on the benzene ring of tryptophan in mammalian tissues. II. Enzymic formation of α-aminomuconic acid from 3-hydroxyanthranilic acid. J. Biol. Chem., 240, 740-749 (1965).
  • 23) Shibata, K., Fukuwatari, T., and Sugimoto, E., Reversed phase HPLC of nicotinic acid mononucleotide for measurement of quinolinate phosphoribosyltransferase. J. Chromatogr., 749, 281-285 (2000).
  • 24) Shibata, K. and Matsuo, H., Changes in blood NAD and NADP levels, and the urinary excretion of nicotinamide and its metabolites in women students after nicotinamide administration. Vitamins (Japan), 64, 301-306 (1989).
  • 25) Ikeda, M., Tsuji, H., Nakamura, S., Ichiyama, A., Nishizuka, Y., and Hayaishi, O., Studies on the biosynthesis of nicotinamide adenine dinucleotide. II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J. Biol. Chem., 240, 1395-1401 (1965).
  • 26) Hayaishi, O., Studies on the biosynthesis of NAD from tryptophan. Vitamins (Japan), 31, 107-114 (1965).
  • 27) Ghafoorunissa and Rao, B. S., Effect of protein level in the diet on quinolinate phosphoribosyltransferase of rat liver. Life Sci., 15, 1597-1602 (1974).
  • 28) Sanada, H., Alteration of tryptophan-niacin metabolism by hormones and nutrients. Vitamins (Japan), 61, 549-562 (1987).
  • 29) Shibata, K. and Toda, S., Effect of thyroxine on the conversion ratio of tryptophan to nicotinamide in rats. Biosci. Biotechnol. Biochem., 58, 1757-1762 (1994).
  • 30) Shibata, K., Effects of protein-amino acids, lipid, and carbohydrate on the conversion ratio of tryptophan to niacin. Vitamins (Japan), 70, 369-382 (1996).
  • 32) Shin, M., Iwamoto, N., Yamashita, M., Sano, K., and Umezawa, C., Pyridine nucleotide levels in liver of rats fed clofibrate- or pyrazinamide-containing diets. Biochem. Pharmacol., 55, 367-371 (1998).
  • 33) Zimhony, O., Cox, J. S., Welch, J. T., Vilcheze, C., and Jacobs, W. R., Jr., Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med., 6, 1043-1047 (2000).
  • 34) Bloch, K., Fatty acid synthases from Mycobacterium phlei. Methods Enzymol., 35, 84-90 (1975).
  • 35) Brennan, P. J. and Nikaido, H., The envelope of mycobacteria. Annu. Rev. Biochem., 64, 29-63 (1995).
  • 36) Vesell, E. S. and Beyer, K. H., Jr., Studies on pyrazinoylguanidine. 7. Effects of single oral doses in normal human subjects. Pharmacology, 58, 140-146 (1999).
  • 11) Shibata, K., Fukuwatari, T., and Sugimoto, E., Effects of dietary pyrazinamide, an antituberculosis agent, on the metabolism of tryptophan to niacin and of tryptophan to serotonin in rats. Biosci. Biotechnol. Biochem., 65, 1339-1346 (2001).
  • 31) Fukuwatari, T., Morikawa, Y., Hayakawa, F., Sugimoto, E., and Shibata K., Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. Biosci. Biotechnol. Biochem., 65, 2154-2161 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.