168
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Guanosine 5′-diphosphate 3′-diphosphate (ppGpp) Synthetic Activities on Escherichia coli SpoT Domains

, , &
Pages 1515-1523 | Received 16 Jan 2002, Accepted 05 Mar 2002, Published online: 22 May 2014

  • 1) Cashel, M., Gentry, D. R., Hernandez, V. J., and Vinella, D., The stringent response, In F. C. Neidhardt, R. Curtis, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. riley, M. Schaechter, and H. E. Umbarger (ed.), in “Escherichia coli and Salmonella: cellular and molecular biology”, 2dn ed. vol. 1. ASM Press, Washington, D. C. pp. 1488-1496. (1996).
  • 2) Pedersen, F. S. and Kjeldgaard, N. O., Analysis of the relA gene product of Escherichia coli. Eur. J. Biochem., 76, 91-97 (1977).
  • 3) An, G., Justesen, J., Watson, R. J., and Friesen, J. D., Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J. Bacteriol., 137, 1100-1110 (1979).
  • 4) Metzger, S., Schreiber, G., Aizenman, E., Cashel, M., and Glaser, G., Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J. Biol. Chem., 264, 21146-21152 (1989).
  • 5) Sarubbi, E., Rudd, K., Xioa, H., Ikehara, K., Kalman, M., and Cashel, M., Characterization of the spoT gene of Escherichia coli. J. Biol. Chem., 264, 15074-15082 (1989).
  • 6) Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., and Cashel, M., Residual guanosine 3′,5′-bipyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem., 266, 5980-5990 (1991).
  • 7) Metzger, S., Dror, I. B., Aizenman, E., Schreiber, G., Toone, M., Freisen, J. D., Cashel, M., and Glaser, G., The nucleotide sequence and characterization of the relA gene of Escherichia coli. J. Biol. Chem., 263, 15699-15704 (1988).
  • 8) Metzger, S., Sarubbi, E., Glaser, G., and Cashel, M., Protein sequences encoded by the relA and spoT genes of Escherichia coli are interrelated. J. Biol. Chem., 266, 9122-9125 (1989).
  • 9) Wendrich, T. M. and Marahiel, M. A., Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Moi. Microbiol., 26, 65-79 (1997).
  • 10) Chakraburtty, R., White, J., Takano, E., and Bibb, M., Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol. Microbiol., 19, 357-368 (1996).
  • 11) Jones, G. H., Activation of ATP:GTP 3′-pyrophosphotransferase (guanosine pentaphosphate synthetase) in Streptomyces antibioticus. J. Bacteriol., 176, 1482-1487 (1994).
  • 12) Jones, G. H., Purification and properties of ATP:GTP 3′-pyrophosphotransferase (guanosine pentaphosphate synthetase) in Streptomyces antibioticus. J. Bacteriol., 176, 1475-1481 (1994).
  • 13) Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 cloning vector and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene, 33, 103-109 (1985).
  • 14) Miller, J. H., Experiments in Molecular Genetics. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York (1972).
  • 15) Haima P., Bron, S., and Venema, G., The effect of restriction on shotgun cloning and plasmid stability Bacillus subtilis Marburg. Mol. Gen. Genet., 209, 335-342 (1987).
  • 16) Deng, W. P. and Nickoloff, L. A., Site-directed mutagenesis of virtually any plasmid by elimination a unique site. Anal. Biochem., 200, 81-88 (1992).
  • 17) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970).
  • 18) Towin, H., Staehein, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl. Acad. Sci., 76, 4350-4354 (1979).
  • 19) Neidhardt, F. C., Bloch, P. L., and Smith, D. F., Culture medium for Enterobacteria. J. Bacteriol., 119, 736-746 (1974).
  • 20) Spira, B. and Yagil, E., The relation between ppGpp and the PHO regulon in Escherichia coli. Mol. Gen. Genet., 257, 469-477 (1998).
  • 21) Davis, R. W., Botstein, D., and Roth, J. R., Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1980).
  • 22) Gentry, D. R., Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. J. Bacteriol., 175, 7982-7989 (1993).
  • 23) Ikehara, K., Ando, H., Takada, Y., and Sugae, K., Presence of guanosine 5′-diphosphate 3′-diphosphate in Bacillus subtilis vegetative cells. J. Biochem., 89, 511-516 (1981).
  • 24) Bochner, B. R. and Ames, B. R., Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J. Biol. Chem., 257, 9759-9769 (1982).
  • 25) Rayls, J., Little, R., and Bremer, H., Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J. Bacteriol., 151, 1261-1268 (1982).
  • 26) Gentry, D. R. and Cashel, M., Cellular localization of the Escherichia coli SpoT protein. J. Bacteriol., 177, 3890-3893 (1995).
  • 27) Gentry, D. R. and Cashel, M., Mutational analysis of the Escherichia coli spoT gene identified distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol. Microbiol., 19, 1373-1384 (1996).
  • 28) Martinez-Costa, O. H., Fernandez-Moreno, M. A., and Malpartida, F., The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J. Bacteriol., 180, 4123-4132 (1998).
  • 29) Schreiber, G., Metzger, S., Aizenman, E., Roza, S., Cashel, M., and Glaser, G., Overexpression of the relA gene in Escherichia coli. J. Biol. Chem., 266, 3760-3767 (1991).
  • 30) Gropp, M., Strausz, Y., Gross, M., and Glaser, G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J. Bacteriol., 183, 570-579 (2001).
  • 31) Ingraham, J. L., Maaloe, O., and Neidhardt, F. C., Growth of the bacterial cell. Sinauer Associates, Sunderland, Mass. (1983).
  • 32) Lange, R. and Hengge-Aronis, R., Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by novel sigma factor σS. J. Bacteriol., 173, 4474-4481 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.