526
Views
61
CrossRef citations to date
0
Altmetric
Original Articles

Suppressive Effects of Genistein on Oxidative Stress and NFκB Activation in RAW 264.7 Macrophages

, , , &
Pages 1916-1922 | Received 17 Mar 2003, Accepted 11 Jun 2003, Published online: 22 May 2014

  • 1) Bowie, A. G., Moynagh, P. N., and O'Neill, L. A., Lipid peroxidation is involved in the activation of NF-κB by tumor necrosis factor but interleukin-1 in the human endothelial cell line ECV304. J. Biol. Chem., 272, 25941-25950 (1997).
  • 2) Manna, S. K., Zhang, H. J., Yant, T., Oberley, L. W., and Aggarwal, B. B., Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-κB and activated protein-1. J. Biol. Chem., 273, 13245-13254 (1998).
  • 3) Schreck, R., Meier, B., Mannel, D. N., Droge, W., and Baeuerle, P. A., Dithiocarbamates as potent inbibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med., 175, 1181-1194 (1992).
  • 4) Bonizzi, G., Piette, J., Schoonbroodt, S., Greimers, R., Havard, L., Merville, M. P., and Bours, V., Reactive oxygen intermediate-dependent NF-κB activation by interleukin-1β requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol., 19, 1950-1960 (1999).
  • 5) O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M., and Mackman, N., Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem., 273, 30410-30414 (1998).
  • 6) Matthews, J. R., Wakasugi, N., Virelizier, J. L., Yodoi, J., and Hay, R. T., Thioredoxin regulates the DNA binding activity of NF-kappaB by reduction of a disulfide bond involving cysteine 62. Nucleic Acids Res., 20, 3821-3830 (1992).
  • 7) Ippouchi, K., Itou, H., Azuma, K., and Higashio, H., Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharide-activated macrophages. Life Sci., 71, 411-419 (2002).
  • 8) Wang, J., and Mazza, G., Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW264.7 macrophages. J. Agric. Food Chem., 50, 850-857 (2002).
  • 9) Prabhu, K. S., Zamamiri-Davis, F., Stewart, J. B., Thomson, J. T., Sordillo, L. M., and Reddy, C. C., Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophage: role of nuclear factor-κB in up-regulation. Biochem. J., 366, 203-209 (2002).
  • 10) Lo, A. H., Liang, Y. C., Lin-Shiau, S. Y., Ho, C. T., and Lin, J. K., Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis, 23, 983-991 (2002).
  • 11) Victor, V. M., Guayerbas, N., Puerto, M., and De la Fuente, M., Changes in the ascorbic acid levels of peritoneal lymphocytes and macrophages of mice with endotoxin-induced oxidative stress. Free Radic. Res., 35, 907-916 (2001).
  • 12) Victor, V. M., and De la Fuente, M., N-acetylcysteine improves in vitro the function of macrophage from mice with endotoxin-induced oxidative stress. Free Radic. Res., 36, 33-45 (2002).
  • 13) Kheir-Eldin, A. A., Motawi, T. K., Gad, M. Z., and Abd-ElGawad, H. M., Protective effect of vitamin E, β-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Inter. J. Biochem. Cell Bio., 33, 475-482 (2001).
  • 14) Ben-Shal, V., Lomnitski, L., Nyska, A., Zurovsky, Y., Bergman, M., and Grossman, S., The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol. Lett., 123, 1-10 (2001).
  • 15) Sadowska-Krowicka, H., Mannick, E. E., Oliver, P. D., Sandoval, M., Zhang, X. J., Eloby-Chiless, S., Clark, D. A., and Miller, M. J., Genistien and gut inflammation:role of nitric oxide. Proc. Soc. Exp. Biol. Med., 217, 351-357 (1998).
  • 16) Yen, G. C., and Lai, H. H., Inhibitory effects of isoflavones on nitric oxide-or peroxynitrite-mediated DNA damage in RAW 264.7 cells and ΦX174DNA. Food and Chemical Toxicology, 40, 1433-1440 (2002).
  • 17) Mizutani, K., Ikeda, K., Nishikata, T., and Yamori, Y., Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. J. Hypertension, 18, 1833-1840 (2000).
  • 18) Sheu, F. S., Lai, H. H., and Yen, G. C., Suppression effect of soy isoflavone on nitric oxide production RAW 264.7 macrophages. J. Agric. Food Chem., 49, 1767-1772 (2001).
  • 19) Kameoka, S., Leavitt, P., Chang, C., and Kuo, S. M., Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids. Cancer Let., 146, 161-167 (1999).
  • 20) Rohrdanz, E., Ohler, S., Tran-Thi, Q. H., and Kahl, R., The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H411E cells. J. Nutr., 132, 370-375 (2002).
  • 21) Gelinas, S., and Martinoli, M. G., Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J. Neuroscience Res., 70, 90-96 (2002).
  • 22) Wei, H., Zhang, X., Wang, Y., and Lebwohl, M., Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett., 185, 21-29 (2002).
  • 23) Fautz, R., Husen, B., and Hechenberger, C., Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat. Res., 253, 173-179 (1991).
  • 24) D'Agostino, P., Ferlazzo, V., Milano, S., La Rosa, M., Di Bella, G., Caruso, R., Barbera, C., Grimaudo, S., Tolomeo, M., Feo, S., and Cillari, E., Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and interleukin-12 synthesis in J774 cell line. International Immunopharmacology, 1, 1765-1776 (2001).
  • 25) Fraga, C. G., Leibovita, R. M., and Roeder, R. G., Lipid peroxidation measured as thiobarbituric-reactive substances in tissue slices:characterization and comparision with homogenates and microsomes. Free Radic. Biol. Med., 4, 155-161 (1988).
  • 26) Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidaized glutathione: applications to mammalian blood and other tissue. Anal. Biochem., 27, 502-522 (1969).
  • 27) Bradford, M. M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann. Biochem., 72, 248-254 (1976).
  • 28) McCord, J. M., and Fridovich, I., Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). Biol. Chem., 244, 6049-6055 (1969).
  • . 1983. p. 273- 286.
  • 30) Dignam, J. D., Lebovitz, R. M., and Roeder, R. G., Accurate transcription initiation by RNA polymerase II in a soluble extract isolated from mammalian nuclei. Nucleic Acids Res., 11, 1475-1489 (1983).
  • 31) Kang, J. L., Lee, K., and Castranova, V., Nitric oxide up-regulates DNA-bind activity of nuclear factor-kappaB in macrophages stimulate with silica and inflammatory stimulants. Mol. Cell. Biochem., 215, 1-9 (2000).
  • 32) Ide, N., and Lau, B. H. S., Garlic compounds minimize intracellular oxidative stress and inhibit κB activation. J. Nutr., 131, 1020S-1026S (2001).
  • 33) Moellering, D., McAndrew, J., Pate, R. P., Forman, H. J., Mulcahy, R. T., Jo, H., and Darley-Usmar, V. M., The induction of GSH synthesis by nanomolar cocentration of NO in endothelial cells: a role for gamma-glutamylcysteine synthetase and gamma-glutamayl transpeptide. FEBS Lett., 448, 292-296 (1999).
  • 34) Cai, Q., and Wei, H., Effect of dietary genistein on antioxidant enzyme activities in SENCAR mice. Nutrition and Cancer, 25, 1-7 (1996).
  • 35) Peng, Q., Wei, Z., and Lau, B. H. S., Pycnogenol inhibits tumor necrosis factor-α-induced nuclear factor kappaB activation and adhesion molecule expression in human vascular endothelial cells. Cell. Mol. Life Sci., 57, 834-841 (2000).
  • 36) Tabary, O., Escotte, S., Couetil, J. P., Hubert, D., Dusser, D., Puchelle, E., and Jacquot, J., Genistein inhibits constitutive and inducible NF-κB activation and decreases IL-8 production by human cystic fibrosis bronchial gland cells. Am. J. Pathol., 155, 473-481 (1999).
  • 37) Carter, A. B., Monick, M. M., and Hunninghake, G. W., Lipopolysaccharide-induced NF-κB activation and cytokine release in human alveolar macrophage in PKC-dependent and TK-, and PC-PLC dependent. Am. J. Respir. Cell. Mol. Biol., 18, 384-391 (1998).
  • 38) Delage, R. L., Fenton, M. J., Savedra, R., Perera, P., Vogel, S. N., Thieringer, P., and Golenbock, D. T., CD-14 mediated translocation of nuclear factor-κB induced by lipopolysaccharide does not require tyrosine kinase activity. J. Biol. Chem., 269, 22253-22260 (1994).
  • 39) Vedavanam, K., Srijayanta, S., O'Reilly, J., Raman, A., and Wiseman, H., Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soybean phytochemical extract (SPE). Phytother. Res., 13, 601-608 (1999).
  • 40) Haraguchi, H., Yoshida, N., Ishikawa, H., Tamura, Y., Mizutani, K., and Kinoshita, T., Protection of mitochondrial functions against oxidative stresses by isoflavans from Glycyrrhiza glabra. J. Pharm. Pharmacol., 52, 219-223 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.