114
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Isolation of GnafC, a Polysaccharide Constituent of Gnaphalium affine, and Synergistic Effects of GnafC and Ascorbate on the Phenotypic Expression of Osteoblastic MC3T3-E1 Cells

, , , , , , & show all
Pages 2068-2074 | Received 17 Jan 2003, Accepted 12 Jun 2003, Published online: 22 May 2014

  • 1) Takuwa, Y., Ohse, C., Wang, E. A., Wozney, J. M., and Yamashita, K., Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochim. Biophys. Res. Commun., 174, 96-101 (1991).
  • 2) Yamaguchi, A., Katagiri, T., Ikeda, T., Wozney, J. M., Rosen, V., Wang, E. A., Kahn, A., Suda, T., and Yoshiki, S., Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J. Cell Biol., 113, 681-687 (1991).
  • 3) Sudo, H., Kodama, H. A., Amagai, Y., Yamamoto, S., and Kasai, S., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol., 96, 191-198 (1983).
  • 4) Torii, Y., Hitomi, K., and Tsukagoshi, N., L-ascorbic acid 2-phosphate promotes osteoblastic differentiation of MC3T3-E1 mediated by accumulation of type I collagen. J. Nutr. Sci. Vitaminol., 40, 229-238 (1994).
  • 5) Franceschi, R. T., and Iyer, B. S., Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J. Bone Miner. Res., 7, 235-246 (1992).
  • 6) Docherty, A. J., O'Connell, J., Crabbe, T., Angal, S., and Murphy, G., The matrix metalloproteases and their natural inhibitors: Prospects for treating degenerative tissue diseases. Trends Biotechnol., 10, 200-207 (1992).
  • 7) Stetler-Stevenson, W. G., Aznavoorian, S., and Liotta, L. A., Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell. Biol., 9, 541-573 (1993).
  • 8) Tyagi, S. C., Proteinases and myocardial extracellular matrix turnover. Mol. Cell Biochem., 168, 1-12 (1997).
  • 9) Tuckermann, J. P., Pittois, K., Partridge, N. C., Merregaert, J., and Angel, P., Collagenase-3 (MMP-13) and integral membrane protein 2a (Itm2a) are marker genes of chondrogenic/osteoblastic cells in bone formation: Sequential, temporal, and spatial expression of Itm2a, alkaline phosphatase, MMP-13 and osteocalcin in the mouse. J. Bone Miner. Res., 15, 1257-1264 (2000).
  • 10) Mizutani, A., Sugiyama, I., Kuno, E., Matsunaga, S., and Tsukagoshi, N., Expression of matrix metalloproteinases during ascorbate-induced differentiation of osteoblastic MC3T3-E1 cells. J. Bone Miner. Res., 16, 2043-2049 (2001).
  • 11) D'Alonzo, R. C., Kowalski, A. J., Denhardt, D. T., Nickols, G. A., and Partridge, N. C., Regulation of collagenase-3 and osteocalcin gene expression by collagen and osteopontin in differentiating MC3T3-E1 cells. J. Biol. Chem., 277, 24788-24798 (2002).
  • 12) Hitomi, K., Torii, Y., and Tsukagoshi, N., Increase in the activity of alkaline phosphatase by L-ascorbic acid 2-phosphate in a human osteoblast cell line, Huo-3N1. J. Nutr. Sci. Vitaminol., 38, 535-544 (1992).
  • 13) Junqueira, L. C., Bignolas, G., and Brentani, R. R., Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J., 11, 447-455 (1979).
  • 14) Torii, Y., Hitomi, K., Yamagishi, Y., and Tsukagoshi, N., Demonstration of alkaline phosphatese participation in the mineralization of osteoblasts by antisense RNA approach. Cell Biol. International, 20, 459-464 (1996).
  • 15) Chomczynski, P., and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156-159 (1987).
  • 16) Terao, M., and Mintz, B., Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase. Proc. Natl. Acad. Sci. U.S.A., 84, 7051-7055 (1987).
  • 17) Takeshita, S., Arai, S., and Kudo, A., Identification and characterization of mouse bone marrow stromal cell lines immortalized by temperature-sensitive SV40 T antigen: supportive activity for osteoclast differentiation. Bone Sep, 9, 236-241 (2001).
  • 18) McVey, J. H., Nomura, S., Kelly, P., Mason, I. J., and Hogan, B. L., Characterization of the mouse SPARC/osteonectin gene. Intron/exon organization and an unusual promoter region. J. Biol. Chem., 263, 11111-11116 (1988).
  • 19) Desbois, C., Hogue, D. A., and Karsenty, G., The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J. Biol. Chem., 269, 1183-1190 (1994).
  • 20) Tsukaguchi, H., Tokui, T., Mackenzie, B., Berger, U. V., Chen, X.-Z., Wang, Y., Brubaker, R. F., and Hediger, M. A., A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature, 399, 70-75 (1999).
  • 21) Kusano, K., Miyaura, C., Inada, M., Tamura, T., Ito, A., Nagase, H., Kamoi, K., and Suda, T., Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: Association of MMP induction with bone resorption. Endocrinology, 139, 1338-1345 (1998).
  • 22) Sabath, D. E., Broome, H. E., and Prystowsky, M. B., Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2-induced transcript in a cloned T-helper lymphocyte. Gene, 91, 185-191 (1990).
  • 23) Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-356 (1956).
  • 24) Erlebacher, A., Filvaroff, E. H., Gitelman, S. E., and Derynck, R., Toward a molecular understanding of skeletal development. Cell, 80, 371-378 (1995).
  • . 1996. p. 41- 56.
  • 26) Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 89, 747-754 (1997).
  • . 1993. p. 1- 45.
  • 28) Yohey, D., Zhang, J., Thrailkill, K. M., Arthur, J. M., and Quarles, L. D., Role of serum in the developmental expression of alkaline phosphatase in MC3T3-E1 osteoblast. J. Cell Physiol., 158, 467-475 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.