2,437
Views
333
CrossRef citations to date
0
Altmetric
Original Articles

Genetics of Polycyclic Aromatic Hydrocarbon Metabolism in Diverse Aerobic Bacteria

&
Pages 225-243 | Published online: 22 May 2014

  • 1) Patnaik, P., Hydrocarbon, aromatic. In “A Comprehensive Guide to the Hazardous Properties of Chemical Substances”, Van Nostrand Reinhold, New York, pp. 425-445 (1992).
  • 2) Keith, L. H., and Telliard, W. A., Priority pollutants. I. A perspective view. Environ. Sci. Technol., 13, 416-423 (1979).
  • 3) Galushko, A., Minz, D., Schink, B., and Widdel, F., Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol., 1, 415-420 (1999).
  • 4) Rockne, K. J., Chee-Sanford, J. C., Sanford, R. A., Hedlund, B. P., Staley, J. T., and Strand, S. E., Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol., 66, 1595-1601 (2000).
  • 5) Cerniglia, C. E., Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol., 30, 31-71 (1984).
  • 6) Cerniglia, C. E., Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351-368 (1992).
  • 7) Shuttleworth, K. L., and Cerniglia, C. E., Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol., 54, 291-302 (1995).
  • 8) Gibson, D. T., and Parales, R. E., Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol., 11, 236-243 (2000).
  • 9) Kanaly, R. A., and Harayama, S., Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol., 182, 2059-2067 (2000).
  • 10) Hamann, C., Hegemann, J., and Hildebrandt, A., Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett., 173, 255-263 (1999).
  • 11) Lloyd-Jones, G., Laurie, A. D., Hunter, D. W. F., and Fraser, R., Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol. Ecol., 29, 69-79 (1999).
  • 12) Meyer, S., Moser, R., Neef, A., Stahl, U., and Kämpfer, P., Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology, 145, 1731-1741 (1999).
  • 13) Moser, R., and Stahl, U., Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl. Microbiol. Biotechnol., 55, 609-618 (2001).
  • 14) Widada, J., Nojiri, H., Kasuga, K., Yoshida, T., Habe, H., and Omori, T., Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl. Microbiol. Biotechnol., 58, 202-209 (2002).
  • 15) Laurie, A. D., and Lloyd-Jones, G., Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol., 66, 1814-1817 (2000).
  • 16) Parales, R. E., Lee, K., Resnick, S. M., Jiang, H., Lessner, D. J., and Gibson, D. T., Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J. Bacteriol., 182, 1641-1649 (2000).
  • 17) Davies, J. I., and Evans, W. C., Oxidative metabolism of naphthalene by soil Pseudomonads: the ring-fission mechanism. Biochem. J., 91, 251-261 (1964).
  • 18) Annweiler, E., Richnow, H. H., Antranikian, G., Hebenbrock, S., Garms, C., Franke, S., Franke, W., and Michaelis, W., Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl. Environ. Microbiol., 66, 518-523 (2000).
  • 19) Resnick, S. M., Lee, K., and Gibson, G. T., Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. NCIB9816. J. Ind. Microbiol. Biotechnol., 17, 438-457 (1996).
  • 20) Kauppi, B., Lee, K., Carredano, E., Parales, R. E., and Gibson, D. T., Structure of an aromatic ring-hydroxylating dioxygenase naphthalene 1,2-dioxygenase. Structure, 6, 571-586 (1998).
  • 21) Parales, R. E., Parales, J. V., and Gibson, D. T., Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. J. Bacteriol., 181, 1831-1837 (1999).
  • 22) Carredano, E., Karlsson, A., Kauppi, B., Choudhury, D., Parales, R. E., Parales, J. V., Lee, K., Gibson, D. T., Eklund, H., and Ramaswamy, S., Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. J. Mol. Biol., 296, 701-712 (2000).
  • 23) Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D., Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J. Biol. Chem., 276, 1945-1953 (2001).
  • 24) Menn, F.-M., Applegate, B. M., and Sayler, G. S., NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acid. Appl. Environ. Microbiol., 59, 1938-1942 (1993).
  • 25) Sanseverino, J., Applegate, B. M., King, J. M. H., and Sayler, G. S., Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol., 59, 1931-1937 (1993).
  • 26) Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H., and Takizawa, N., Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol., 176, 2439-2443 (1994).
  • 27) Yang, Y., Chen, R. F., and Shiaris, M. P., Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J. Bacteriol., 176, 2158-2164 (1994).
  • 28) Pinyakong, O., Habe, H., Supaka, N., Pinpanichkarn, P., Juntongjin, K., Yoshida, T., Furihata, K., Nojiri, H., Yamane, H., and Omori, T., Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol. Lett., 191, 115-121 (2000).
  • 29) Dean-Ross, D., Moody, J. D., Freeman, J. P., Doerge, D. R., and Cerniglia, C. E., Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett., 204, 205-211 (2001).
  • 30) Dunn, N. W., and Gunsalus, I. C., Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol., 114, 974-979 (1973).
  • 31) Yen, K.-M., and Gunsalus, I. C., Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. USA, 79, 874-878 (1982).
  • 32) Yen, K.-M., and Gunsalus, I. C., Regulation of naphthalene catabolic genes of plasmid NAH7. J. Bacteriol., 162, 1008-1013 (1985).
  • 33) Grund, A. D., and Gunsalus, I. C., Cloning of genes for naphthalene metabolism in Pseudomonas putida. J. Bacteriol., 156, 89-94 (1983).
  • 34) Schell, M. A., Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene, 36, 301-309 (1985).
  • 35) Schell, M. A., Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA, 83, 369-373 (1986).
  • 36) Schell, M. A., and Wender, P. E., Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. J. Bacteriol., 166, 9-14 (1986).
  • 37) Tsuda, M., and Iino, T., Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol. Gen. Genet., 223, 33-39 (1990).
  • 38) Cane, P. A., and Williams, P. A., A restriction map of naphthalene catabolic plasmid pWW60-1 and location of some of its catabolic genes. J. Gen. Microbiol., 132, 2919-2929 (1986).
  • 39) Yen, K.-M., and Serdar, C. M., Genetics of naphthalene catabolism in Pseudomonas. Crit. Rev. Microbiol., 15, 247-268 (1988).
  • 40) Platt, A., Shingler, V., Taylor, S. C., and Williams, P. A., The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahO genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of conversion of meta-cleavage pathway gene sequences. Microbiology, 141, 2223-2233 (1995).
  • 41) Serdar, C. M., and Gibson, D. T., Isolation and characterization of altered plasmids in mutant strains of Pseudomonas putida NCIB9816. Biochem. Biophys. Res. Commun., 164, 764-771 (1989).
  • 42) Serdar, C. M., and Gibson, D. T., Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem. Biophys. Res. Commun., 164, 772-779 (1989).
  • 43) Kurkela, S., Lehväslaiho, H., Palva, E. T., and Teeri, T. H., Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene, 73, 355-362 (1988).
  • 44) Simon, M. J., Osslund, T. D., Saunders, R., Ensley, B. D., Suggs, S., Harcourt, A., Suen, W., Cruden, D. L., Gibson, D. T., and Zylstra, G. J., Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB9816-4. Gene, 127, 31-37 (1993).
  • 45) Eaton, R. W., Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J. Bacteriol., 176, 7757-7762 (1994).
  • 46) Denome, S. A., Stanley, D. C., Olson, E. S., and Young, K. D., Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol., 175, 6890-6901 (1993).
  • 47) Takizawa, N., Kaida, N., Torigoe, S., Moritani, T., Sawada, T., Satoh, S., and Kiyohara, H., Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J. Bacteriol., 176, 2444-2449 (1994).
  • 48) Takizawa, N., Iida, T., Sawada, T., Yamauchi, K., Wang, Y.-W., Fukuda, M., and Kiyohara, H., Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J. Biosci. Bioeng., 87, 723-731 (1999).
  • 49) Bosch, R., Garcia-Valdés, E., and Moore, E. R. B., Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene, 236, 149-157 (1999).
  • 50) Bosch, R., Moore, E. R. B., Garcia-Valdés, E., and Pieper, D. H., NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol., 181, 2315-2322 (1999).
  • 51) Bosch, R., Garcia-Valdés, E., and Moore, E. R. B., Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene, 245, 65-74 (2000).
  • 52) Harayama, S., Rekik, M., Wasserfallen, A., and Bairoch, A., Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. Mol. Gen. Genet., 210, 241-247 (1987).
  • 53) You, I.-S., Ghosal, D., and Gunsalus, I. C., Nucleotide sequence of plasmid NAH7 gene nahR and DNA binding of the nahR product. J. Bacteriol., 170, 5409-5415 (1988).
  • 54) You, I.-S., Ghosal, D., and Gunsalus, I. C., Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3′-flanking region. Biochemistry, 30, 1635-1641 (1991).
  • 55) Grimm, A. C., and Harwood, C. S., NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol., 181, 3310-3316 (1999).
  • 56) Goyal, A. K., and Zylstra, G. J., Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol., 62, 230-236 (1996).
  • 57) Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., and Gibson, D. T., Expression of naphthalene oxidation genes in Escherichia coli result in the biosynthesis of indigo. Science, 222, 167-169 (1983).
  • 58) Zylstra, G. J., Kim, E., and Goyal, A. K., Comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation. Genet. Eng., 19, 257-269 (1997).
  • 59) Goyal, A. K., and Zylstra, G. J., Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J. Ind. Microbiol. Biotechnol., 19, 401-407 (1997).
  • 60) Fuenmayor, S. L., Wild, M., Boyes, A. L., and Williams, P., A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J. Bacteriol., 180, 2522-2530 (1998).
  • 61) Zhou, N.-Y., Fuenmayor, S. L., and Williams, P. A., nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J. Bacteriol., 183, 700-708 (2001).
  • 62) Zhou, N.-Y., Al-Dulayymi, J., Baird, M. S., and Williams, P. A., Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationship to and shared electron transport proteins with naphthalene dioxygenase. J. Bacteriol., 184, 1547-1555 (2002).
  • 63) Laurie, A. D., and Lloyd-Jones, G., The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J. Bacteriol., 181, 531-540 (1999).
  • 64) Laurie, A. D., and Lloyd-Jones, G., Conserved and hybrid meta-cleavage operons from Burkholderia RP007. Biochem. Biophys. Res. Commun., 262, 308-314 (1999).
  • 65) Kiyohara, H., Nagao, K., Kouno, K., and Yano, K., Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol., 43, 458-461 (1982).
  • 66) Fredrickson, J. K., Brockman, F. J., Workman, D. J., Li, S. W., and Stevens, T. O., Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl. Environ. Microbiol., 57, 796-803 (1991).
  • 67) Fredrickson, J. K., Balkwill, D. L., Drake, G. R., Romine, M. F., Ringelberg, D. B., and White, D. C., Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl. Environ. Microbiol., 61, 1917-1922 (1995).
  • 68) Gibson, D. T., Roberts, R. L., Wells, M. C., and Kobal, V. M., Oxidation of biphenyl by a Beijerinckia species. Biochem. Biophys. Res. Commun., 50, 211-219 (1973).
  • 69) Zylstra, G. J., and Kim, E., Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J. Ind. Microbiol. Biotechnol., 19, 408-414 (1997).
  • 70) Mueller, J. G., Chapman, P. J., Blattmann, B. O., and Pritchard, P. H., Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol., 56, 1079-1086 (1990).
  • 71) Romine, M. F., Stillwell, L. C., Wong, K.-K., Thurston, S. J., Sisk, E. C., Sensen, C., Gaasterland, T., Fredrickson, J. K., and Saffer, J. D., Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol., 181, 1585-1602 (1999).
  • 72) Kim, E., and Zylstra, G. J., Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1. J. Bacteriol., 177, 3095-3103 (1995).
  • 73) Kim, E., and Zylstra, G. J., Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J. Ind. Microbiol. Biotechnol., 23, 294-302 (1999).
  • 74) Story, S. P., Parker, S. H., Kline, J. D., Tzeng, T. J., Mueller, J. G., and Kline, E. L., Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, and fluoranthene by Sphingomonas paucimobilis var. EPA505. Gene, 260, 155-169 (2000).
  • 75) Taira, K., Hayase, N., Arimura, N., Yamashita, S., Miyazaki, T., and Furukawa, K., Cloning and nucleotide sequence of the 2,3-dihydroxydioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry, 27, 3990-3996 (1988).
  • 76) Yrjala, K., Paulin, L., and Romantschuk, M., Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol. Lett., 154, 403-408 (1997).
  • 77) Kim, S., Kweon, O. K., Kim, Y., Kim, C. K., Lee, K. S., and Kim, Y. C., Localization and sequence analysis of the phnH gene encoding 2-hydroxypent-2,4-dienoate hydratase in Pseudomonas sp. strain DJ77. Biochem. Biophys. Res. Commun., 238, 56-60 (1997).
  • 78) Kim, S., Shin, H. J., Kim, Y., Kim, S. J., and Kim, Y. C., Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem. Biophys. Res. Commun., 240, 41-45 (1997).
  • 79) Shin, H. J., Kim, S. J., and Kim, Y. C., Sequence analysis of the phnD gene encoding 2-hydroxymuconic semialdehyde hydrolase in Pseudomonas sp. strain DJ77. Biochem. Biophys. Res. Commun., 232, 288-291 (1997).
  • 80) Shuttleworth, K. L., Sung, J., Kim, E., and Cerniglia, C. E., Physiological and genetic comparison of two aromatic hydrocarbon-degrading Sphingomonas strains. Mol. Cells., 10, 199-205 (2000).
  • 81) Romine, M. F., Fredrickson, J. K., and Li, S.-M. W., Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F199. J. Ind. Microbiol. Biotechnol., 23, 303-313 (1999a).
  • 82) Kulakova, A. N., Reid, K. A., Larkin, M. J., Allen, C. C. R., and Kulakov, L. A., Isolation of Rhodococcus rhodochrous NCIMB13064 derivatives with new biodegradative abilities. FEMS Microbiol. Lett., 145, 227-231 (1996).
  • 83) Allen, C. C. R., Boyd, D. R., Larkin, M. J., Reid, K. A., Sharma, N. D., and Wilson, K., Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB12038. Appl. Environ. Microbiol., 63, 151-155 (1997).
  • 84) Chartrain, M., Jackey, B., Taylor, C., Sandford, V., Gbewonyo, K., Lister, L., Dimichele, L., Hirsch, C., Heimbuch, B., Maxwell, C., Pascoe, D., Buckland, B., and Greasham, R., Bioconversion of indene to cis (1S,2R) indandiol and trans (1R,2R) indandiol by Rhodococcus species. J. Ferment. Bioeng., 86, 550-558 (1998).
  • 85) Uz, I., Duan, Y. P., and Ogram, A., Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213. FEMS Microbiol. Lett., 185, 231-238 (2000).
  • 86) Larkin, M. J., Allen, C. C. R., Kulakov, L. A., and Lipscomb, D. A., Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J. Bacteriol., 181, 6200-6204 (1999).
  • 87) Kulakov, L. A., Allen, C. C. R., Lipscomb, D. A., and Larkin, M. J., Cloning and characterization of a novel cis-naphthalene dihydrodiol dehydrogenase gene (narB) from Rhodococcus sp. NCIMB12038. FEMS Microbiol. Lett., 182, 327-331 (2000).
  • 88) Iwabuchi, T., Inomata-Yamoguchi, Y., Katsuta, A., and Harayama, S., Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42°C. J. Mar. Biotechnol., 6, 86-90 (1998).
  • 89) Iwabuchi, T., and Harayama, S., Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J. Bacteriol., 179, 6488-6494 (1997).
  • 90) Iwabuchi, T., and Harayama, S., Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J. Mol. Biol., 273, 8332-8336 (1998).
  • 91) Iwabuchi, T., and Harayama, S., Biochemical and genetic characterization of trans-2′-carboxybenzalpyruvate hydratase-aldolase from phenanthrene-degrading Nocardioides strain. J. Bacteriol., 80, 945-949 (1998).
  • 92) Adachi, K., Iwabuchi, T., Sano, H., and Harayama, S., Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J. Bacteriol., 181, 757-763 (1999).
  • 93) Saito, A., Iwabuchi, T., and Harayama, S., Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere, 38, 1331-1337 (1999).
  • 94) Saito, A., Iwabuchi, T., and Harayama, S., A novel phenanthrene dioxygenase from Nocardioides sp. KP7: expression in Escherichia coli. J. Bacteriol., 182, 2134-2141 (2000).
  • 95) Khan, A. A., Wang, R.-F., Cao, W.-W., Doerge, D. R., Wennerstrom, D., and Cerniglia, C. E., Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol., 67, 3577-3585 (2001).
  • 98) Heitkamp, M. A., Franklin, W., and Cerniglia, C. E., Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol., 54, 2549-2555 (1988).
  • 99) Heitkamp, M. A., Freeman, J. P., Miller, D. W., and Cerniglia, C. E., Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol., 54, 2556-2565 (1988).
  • 100) Walter, U., Beyer, M., Klein, J., and Rehm, H.-J., Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol., 34, 671-676 (1991).
  • 101) Heitkamp, M. A., and Cerniglia, C. E., Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol., 55, 1968-1973 (1989).
  • 102) Kelley, I., Freeman, J. P., Evans, F. E., and Cerniglia, C. E., Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp. Appl. Environ. Microbiol., 57, 636-641 (1991).
  • 103) Rafii, F., Selby, A. L., Newton, R. K., and Cerniglia, C. E., Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp. Appl. Environ. Microbiol., 60, 4263-4267 (1994).
  • 104) Moody, J. D., Freeman, J., Doerge, D. R., and Cerniglia, C. E., Degradation of phenanthrene and anthrecene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol., 67, 1476-1483 (2001).
  • 105) Wang, R.-F., Wennerstrom, D., Cao, W.-W., Khan, A. A., and Cerniglia, C. E., Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the polycyclic aromatic hydrocarbon-degrading bacterium Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol., 66, 4300-4304 (2000).
  • 106) Grifoll, M., Casellas, M., Bayona, J. M., and Solanas, A. M., Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol., 58, 2910-2917 (1992).
  • 107) Grifoll, M., Selifonov, S. A., and Chapman, P. J., Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl. Environ. Microbiol., 60, 2438-2449 (1994).
  • 108) Grifoll, M., Selifonov, S. A., Gatlin, C. V., and Chapman, P. J., Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl. Environ. Microbiol., 61, 3711-3723 (1995).
  • 109) Grifoll, M., Selifonov, S. A., and Chapman, P. J., Transformation of substituted fluorenes and fluorene analogs by Pseudomonas sp. strain F274. Appl. Environ. Microbiol., 61, 3490-3493 (1995).
  • 110) Monna, L., Omori, T., and Kodama, T., Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl. Environ. Microbiol., 59, 285-289 (1993).
  • 111) Trenz, S. P., Engesser, K. H., Fischer, P., and Knackmuss, H.-J., Degradation of fluorene by Brevibacterium sp. strain DPO1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one. J. Bacteriol., 176, 789-795 (1994).
  • 112) Casellas, M., Grifoll, M., Bayona, J. M., and Solanas, A. M., New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Microbiol., 63, 816-826 (1997).
  • 113) Casellas, M., Grifoll, M., Sabaté, J., and Solanas, A. M., Isolation and characterization of a 9-fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a consortium. Can. J. Microbiol., 44, 734-742 (1998).
  • 114) Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J. R., Renard, M.-E., Springael, D., and Cornelis, G. R., Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res. Microbiol., 152, 861-872 (2001).
  • 115) Kasuga, K., Habe, H., Chung, J.-S., Yoshida, T., Nojiri, H., Yamane, H., and Omori, T., Isolation and characterization of the genes encoding a novel oxygenase component of angular dioxygenase from the Gram-positive dibenzofuran-degrader Terrabacter sp. strain DBF63. Biochem. Biophys. Res. Commun., 283, 195-204 (2001).
  • 116) Habe, H., Miyakoshi, M., Chung, J.-S., Kasuga, K., Yoshida, T., Nojiri, H., and Omori, T., Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl. Microbiol. Biotechnol., in press (2003).
  • 117) Herrick, J. B., Stuart-Keil, K. G., Ghiorse, W. C., and Madsen, E. L., Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl. Environ. Microbiol., 63, 2330-2337 (1997).
  • 118) Ravatn, R., Studer, S., Zehnder, A. J. B., and van der Meer, J. R., Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J. Bacteriol., 180, 5505-5514 (1998).
  • 119) Ka, J. O., and Tiedje, J. M., Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergenic transfer. J. Bacteriol., 176, 5284-5289 (1994).
  • 120) Dagher, F., Deziel, E., Lirette, P., Paquette, G., Bisaillon, J.-G., and Villemur, R., Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can. J. Microbiol., 43, 368-377 (1997).
  • 121) Hedlund, B. P., Geiselbrecht, A. D., and Staley, J. T., Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol. Lett., 201, 47-51 (2001).
  • 122) Eaton, R. W., Selifonova, O. V., and Gedney, R. M., Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4. Biodegradation, 9, 119-132 (1998).
  • 123) Ferrero, M., Llobet-Brossa, E., Lalucat, J., García-Valdés, E., Rosselló-Mora, R., and Bosch, R., Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl. Environ. Microbiol., 68, 957-962 (2002).
  • 124) Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J., and Staley, J. T., Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol., 65, 251-259 (1999).
  • 125) Yeates, C., Holmes, A. J., and Gillings, M. R., Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ. Microbiol., 2, 644-653 (2000).
  • 126) Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680 (1994).
  • 96) Chun, H.-K., Ohnishi, Y., Misawa, N., Shindo, K., Hayashi, M., Harayama, S., and Horinouchi, S., Biotransformation of phenanthrene and 1-methoxynaphthalene with Streptomyces lividans cells expressing a marine bacterial phenanthrene dioxygenase gene cluster. Biosci. Biotechnol. Biochem., 65, 1774-1781 (2001).
  • 97) Shindo, K., Ohnishi, Y., Chun, H.-K., Takahashi, H., Hayashi, M., Saito, A., Iguchi, K., Furukawa, K., Harayama, S., Horinouchi, S., and Misawa, N., Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem., 65, 2472-2481 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.