423
Views
100
CrossRef citations to date
0
Altmetric
Original Articles

Transepithelial Transport of p-Coumaric Acid and Gallic Acid in Caco-2 Cell Monolayers

, &
Pages 2317-2324 | Received 16 Apr 2003, Accepted 24 Jul 2003, Published online: 22 May 2014

  • 1) Xing, Y., and White, P. J., Identification and function of antioxidants from oat groats and hulls. J. Am. Oil Chem. Soc., 74, 303-307 (1997).
  • 2) Pan, G. X., Bolton, J. L., and Learly, G. J., Determination of ferulic and p-coumaric acids in wheat straw and the amounts released by mild acid and alkaline peroxide treatment. J. Agric. Food Chem., 46, 5283-5288 (1998).
  • 3) Plumb, G. W., Chambers, S. J., Lambert, N., Bartolome, B., Heaney, R. K., Wanigatunga, S., Aruoma, O. I., Halliwell, B., and Williamson, G., Antioxidant actions of fruit, herb and spice extracts. J. Food Lipids, 3, 171-188 (1996).
  • 4) Clifford, M. N., Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J. Sci. Food Agric., 79, 362-372 (1999).
  • 5) Torres, J. L., and Rosazza, J. P. N., Reaction of p-coumaric acid with nitrite: product isolation and mechanism studies. J. Agric. Food Chem., 49, 1486-1492 (2001).
  • 6) Bryngelsson, S., Dimberg, L. H., and Kamal-Eldin, A., Effects of commercial processing on level of antioxidants in oats (Avena sativa L.). J. Agric. Food Chem., 50, 1890-1896 (2002).
  • 7) Pannala, A. S., Razaq, R., Halliwell, B., Singh, S., and Rice-Evans, C. A., Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration or electron donation? Free Radical Biol. Med., 24, 594-606 (1998).
  • 8) Li, P., Wang, H. Z., Wang, X. Q., and Wu, Y. N., The blocking effect of phenolic acid on N-nitrosomorpholine formation in vitro. Biomed. Environ. Sci., 7, 68-78 (1994).
  • 9) Kato, Y., Ogino, Y., Aoki, T., Uchida, K., Kawakishi, S., and Osawa, T., Phenolic antioxidants prevent peroxynitrite-derived collagen modification in vitro. J. Agric. Food Chem., 45, 3004-3009 (1997).
  • 10) Niwa, T., Doi, U., Kato, Y., and Osawa, T., Inhibitory mechanism of sinapic acid against peroxynitrite-mediated tyrosine nitration of protein in vitro. FEBS Lett., 459, 43-46 (1999).
  • 11) Harbowy, M. E., and Ballentine, D. A., Tea chemistry. Crit. Rev. Plant Sci., 16, 415-480 (1997).
  • 12) Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y., and Yabu, Y., Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun., 204, 898-904 (1994).
  • 13) Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T., Ogihara, Y., Jiang, B. Y., and Chen, Y., Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull., 18, 1526-1530 (1995).
  • 14) Gali, H. U., Perchellet, E. M., Klish, D. S., Johnson, J. M., and Perchellet, J. P., Antitumor-promoting activities of hydrolysable tannins in mouse skin. Carcinogenesis, 13, 715-718 (1992).
  • 15) Gali, H. U., Perchellet, E. M., and Perchellet, J. P., Inhibition of tumor promoter-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res., 51, 2820-2825 (1991).
  • 16) Nakagawa, K., Okuda, S., and Miyazawa, T., Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci. Biotechnol. Biochem., 61, 1981-1985 (1997).
  • 17) Lee, M. J., Wang, Z. Y., Li, H., Chen, L., Sun, Y., Gobbo, S., Balentine, D. A., and Yang, C. S., Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol. Biomarkers Prev., 4, 393-399 (1995).
  • 18) Piskula, M. K., and Terao, J., Accumulation of (-)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rats tissues. J. Nutr., 128, 1172-1178 (1998).
  • 19) Scalbert, A., and Williamson, G., Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2073S-2085S (2000).
  • 20) Konishi, Y., Hagiwara, K., and Shimizu, M., Transepithelial transport of fluorescein in Caco-2 cell monolayers and its use in in vitro evaluation of phenolic acids availability. Biosci. Biotechnol. Biochem., 66, 2449-2457 (2002).
  • 21) Konishi, Y., and Shimizu, M., Transepithelial Transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem., 67, 856-862 (2003).
  • 22) Konishi, Y., Kubo, K., and Shimizu, M., Structural Effects of phenolic acids on transepithelial transport of fluorescein in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem., 67, 2014-2017 (2003).
  • 23) Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736-749 (1989).
  • 24) Hilgers, A. R., Conradi, R. A., and Burton, P. S., Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res., 7, 902-910 (1990).
  • 25) Artursson, P., and Karlsson, J., Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun., 175, 880-885 (1991).
  • 26) Hidalgo, I. J., and Borchardt, R. T., Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta, 1028, 25-30 (1990).
  • 27) Hidalgo, I. J., and Borchardt, R. T., Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta, 1035, 97-103 (1990).
  • 28) Dantzig, A. H., and Bergin, L., Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta, 1027, 211-217 (1990).
  • 29) Guo, C., Cao, G., Sofic, E., and Prior, R. L., High-performance liquid chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables: relationship to oxygen radical absorbance capacity. J. Agric. Food Chem., 45, 1787-1796 (1997).
  • 30) Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn., 4, 879-885 (1981).
  • 31) Terao, T., Hisanaga, E., Sai, Y., Tamai, I., and Tsuji, A., Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol., 48, 1083-1089 (1996).
  • 32) Hashimoto, K., Matsunaga, N., and Shimizu, M., Effect of vegetable extract on the transepithelial permeability of the human intestinal Caco-2 cell monolayer. Biosci. Biotechnol. Biochem., 58, 1345-1346 (1994).
  • 33) Price, N. T., Jackson, V. N., and Halestrap, A. P., Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J., 329, 321-329 (1998).
  • 34) Rahman, B., Schneider, H. P., Broer, A., Deitmer, J. W., and Broer, S., Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry, 38, 11577-11584 (1999).
  • 35) Spencer, J. P. E., Chowrimootoo, G., Choudhury, R., Debnam, E. S., Srai, S. K., and Rice-Evans, C., The small intestine can both absorb and glucuronidate luminal flavonoid. FEBS Lett., 458, 224-230 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.