544
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Insulin-Dependent Adipogenesis in Stromal ST2 Cells Derived from Murine Bone Marrow

, &
Pages 314-321 | Received 26 Jul 2002, Accepted 27 Sep 2002, Published online: 22 May 2014

  • 1) Ogawa, M., Nishikawa, S., Ikuta, K., Yamamura, F., Naito, M., and Takahashi, K., B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J., 7, 1337-1343 (1988).
  • 2) Nishikawa, S. I., Ogawa, M., Nishikawa, S., Kunisada, T., and Kodama, H., B lymphopoiesis on stromal cell clone: stromal cell clones acting on different stages of B cell differentiation. Eur. J. Immunol., 18, 1767-1771 (1988).
  • 3) Udagawa, N., Takahashi, N., Akatsu, T., Sasaki, T., Yamaguchi, A., Kodama, H., Martin, T. J., and Suda, T., The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology, 125, 1805-1813 (1989).
  • 4) Udagawa, N., Takahashi, N., Akatsu, T., Tanaka, H., Sasaki, T., Nishihara, T., Koga, T., Martin, T. J., and Suda, T., Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA, 87, 7260-7264 (1990).
  • 5) Yamaguchi, A., Ishizuya, T., Kinto, N., Wada, Y., Katagiri, T., Wozney, J. M., Rosen, V., and Yoshiki, S., Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys. Res. Commun., 220, 366-371 (1996).
  • 6) Natsume, T., Tomita, S., Iemura, S., Kinto, N., Yamaguchi, A., and Ueno, N., Interaction between soluble type I receptor for bone morphogenetic protein and bone morphogenetic protein-4. J. Biol. Chem., 272, 11535-11540 (1997).
  • 7) Otsuka, E., Yamaguchi, A., Hirose, S., and Hagiwara, H., Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am. J. Physiol., 277, C132-C138 (1999).
  • 8) Yamaguchi, T., Chattopadhyay, N., Kifor, O., and Brown, E. M., Extracellular calcium (Ca2+ °)-sensing receptor in murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+ on the function of ST2 cells. Endocrinology, 139, 3561-3568 (1998).
  • 9) Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R. M., The nuclear receptor superfamily: the second decade. Cell, 83, 835-839 (1995).
  • 10) Kozak, L. P., and Jensen, T. J., Genetic and developmental control of multiple forms of L-glycerol 3-phosphate dehydrogenase. J. Biol. Chem., 249, 7775-7781 (1974).
  • 11) Kasturi, R., and Johsi, V. C., Hormonal regulation of stearoyl coenzyme A desaturase activity and lipogenesis during adipose conversion of 3T3-L1 cells. J. Biol. Chem., 257, 12224-12230 (1982).
  • 12) Chayen, J., and Bitensky, L., In “Practical Histochemistry”, ed. Chayen, J., Wiley and Sons Ltd., Chichester, U.K., pp. 114-115 (1991).
  • 13) Ding, J., Woo, J. T., and Nagai, K., The effects of retinoic acid on reversing the adipocyte differentiation into an osteoblastic tendency in ST2 cell, a murine bone marrow-derived stromal cell line. Cytotechnology, 36, 125-136 (2001).
  • 14) Gimble, J. M., The function of adipocytes in the bone marrow stroma. New Biol., 2, 304-312 (1990).
  • 15) Greenberger, J. S., Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature, 275, 752-754 (1978).
  • 16) Greenberger, J. S., Corticosteroid-dependent differentiation of human marrow preadipocytes in vitro. In Vitro, 15, 823-828 (1979).
  • 17) Tavassoli, M., Marrow adipose cells and hemopoiesis: an interpretive review. Exp. Hematol., 12, 139-146 (1989).
  • 18) Thomas, T., Gori, F., Spelsberg, T. C., Khosla, S., Riggs, B. L., and Conover, C. A., Response of bipotential human marrow stromal cells to insulin-like growth factors: effects on binding protein production, proliferation, and commitment to osteoblasts and adipocytes. Endocrinology, 140, 5036-5044 (1999).
  • 19) Kodama, H., Amagai, Y., Koyama, H., and Kasai, S., Hormonal responsiveness of a preadipose cell line derived from newborn mouse calvaria. J. Cell. Physiol., 112, 83-88 (1982b).
  • 20) Jia, D., and Heersche, J. N. M., Insulin-like growth factor-1 and -2 stimulate osteoprogenitor proliferation and differentiation and adipocyte formation in cell populations derived from adult rat bone. Bone, 27, 785-794 (2000).
  • 21) Shao, D., and Laza, M. A., Peroxisome proliferator activated receptor γ, CCAAT/enhancer-binding protein α, and cell cycle status regulate the commitment to adipocyte differentiation. J. Biol. Chem., 272, 21473-21478 (1997).
  • 22) MacDougald, O. A., and Lane, M. D., Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem., 64, 345-373 (1993).
  • 23) Schmidt, A., Endo, N., Rutlegeg, S. J., Vogel, R., Shinar, D., and Rodan, G. A., Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol. Endocrinol., 6, 1634-1641 (1992).
  • 24) Gimble, J. M., Dorheim, M. A., Cheng, Q., Medina, K., Wang, C. S., Jones, R., Koren, E., Pietrangeli, C. E., and Kincade, P. W., Adipogenesis in a murine bone marrow stromal cell line capable of supporting B lymphocyte and proliferation: biochemical and molecular characterization. Eur. J. Immunol., 20, 379-387 (1990).
  • 25) Gimble, J. M., Robinson, C. E., Wu, X., Kelly, K. A., Rodriguez, B. R., Kliewer, S. A., Lehmann, J. M., and Morris, D. C., Peroxisome proliferator-activated receptor-γ activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol. Pharmacol., 50, 1087-1094 (1996).
  • 26) Altiok, S., Xu, M., and Spiegelman, B. M., PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev., 11, 1987-1998 (1997).
  • 27) Tontonoz, P., Hu, E., and Speigelman, B. M., Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell, 79, 1147-1156 (1994).
  • 28) Brun, R. P., Tontonoz, P., Forman, B. M., Ellis, R., Chen, J., Evans, R. M., and Spiegelman, B. M., Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev., 10, 974-984 (1996).
  • 29) Gimble, J. M., Morgan, C., Kelly, K., Wu, X., Dandapani, V., Wang, C. S., and Rosen, V., Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem., 58, 393-402 (1995).
  • 30) Centrella, M., Horowitz, M. C., Wozney, J. M., and McCarthy, T. L., Transforming growth factor-β gene family members and bone. Endocrinol. Rev., 15, 27-39 (1994).
  • 31) Prabhakar, U., James, I. E., Dodds, R. A., Lee-Ryaczewski, E., Rieman, D. J., Lipshutz, D., Trulli, S., Jonak, Z., Tan, K. B., Drake, F. H., and Gowen, M., A novel human bone marrow stroma-derived cell line TF274 is highly osteogenic in vitro and in vivo. Calcif. Tissue Int., 63, 214-220 (1998).
  • 32) Locklin, R. M., Oreffo, R. O. C., and Triffitt, J. T., Effects of TGFβ and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol. Int., 23, 185-194 (1999).
  • 33) Gagnon, A. M., Chabot, J., Pardasani, D., and Sorisiky, A., Extracellular matrix induced by TGFβ impairs insulin signal transduction in 3T3-L1 preadipose cells. J. Cell. Physiol., 175, 370-378 (1998).
  • 34) Zhang, B., Berger, J., Hu, E., Szalkowski, D., White-Carrington, S., Spiegelman, B. M., and Moller, D. E., Negative regulation of peroxisome-proliferator-activated receptor-γ gene expression contributes to the antiadipogenic effects of tumor necrosis factor-α. Mol. Endocrinol., 10, 1457-1466 (1996).
  • 35) Xue, J. C., Schwarz, E. J., Chawla, A., and Lazar, M. A., Distinct stage in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARγ. Mol. Cell. Biol., 16, 1567-1575 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.