477
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Formate-stimulated Oxidation of Methanol by Pseudomonas putida 9816

, &
Pages 684-690 | Received 17 Jun 2002, Accepted 18 Dec 2002, Published online: 22 May 2014

  • 1) Anthony, C., The biochemistry of methylotrophs. Academic Press, N.Y., pp. 269-295 (1982).
  • 2) Van Dijken, J. P., Harder, W., Beardsmore, A. J., and Quayle, J. R., Dihydroxyacetone: An intermediate in the assimilation of methanol by yeasts? FEMS Microbiol. Lett., 4, 97-102 (1978).
  • 3) Babel, W., and Loffhagen, N., Assimilation of methanol by yeasts, a new approach. Z. Allg. Mikrobiol., 19, 299-302 (1979).
  • 4) Ro, Y. T., Eom, C. Y., Song, T., Cho, J. W., and Kim, Y. M., Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. J. Bacteriol., 179, 6041-6047 (1997).
  • 5) Anthony, C., Bacterial oxidation of methane and methanol. Adv. Microbial Physiol., 27, 113-210 (1986).
  • 6) Sahm, H., Metabolism of methanol by yeasts. Adv. Biochem. Eng., 6, 77-103 (1977).
  • 7) de Koning, W., and Harder, W., Methanol-utilizing yeasts. In “Methane and Methanol Utilizers”, eds. Murrell, J. C., and Dalton, H., Plenum Press, N.Y., pp. 207-244 (1992).
  • 8) Arfman, N., Watling, E. M., Clement, W., van Oosterwijk, R. J., de Vries, G. E., Harder, W., Attwood, M. M., and Dijkhuizen, L., Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch. Micobiol., 152, 280-288 (1989).
  • 9) Babel, W., and van Verseveld, H. W., Theoretical limits of growth yields and an analysis of experimental data. In “Microbial Growth on C1 Compounds”, Proceedings 5th International Symposium, eds. van Verseveld, H. W., and Duine, J. A., Martinus Nijhoff Publ., Dordrecht, Boston, Lancaster, pp. 211-219 (1987).
  • 10) Uhlig, H., Karbaum, K., and Steudel, A., Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium. Int. J. Syst. Bacteriol., 36, 317-322 (1986).
  • 11) West, P. W., and Sen, B., Spectrophotometric determination of traces of formaldehyde. Z. Anal. Chem., 153, 177-183 (1956).
  • 12) Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951).
  • 13) Kato, N., Shirakawa, K., Kobayashi, H., and Sakazawa, C., The dismutation of aldehydes by a bacterial enzyme. Agric. Biol. Chem., 47, 39-46 (1983).
  • 14) Steudel, A., Miethe, D., and Babel, W., Bakterium MB 58, ein methylotrophes “Essigsäurebakterium”. Z. Allg. Mikrobiol., 20, 663-672 (1980).
  • 15) Yamada, S., Nabe, K., Wada, M., and Chibata, I., Isolation and characterization of a methanol-utilizing bacterium Pseudomonas putida strain 981. J. Ferment. Technol., 55, 436-443 (1977).
  • 16) Babel, W., Brinkmann, U., and Müller, R. H., The auxiliary substrate concept—an approach for overcoming limits of microbial performances. Acta Biotechnol., 13, 211-242 (1993).
  • 17) Kato, N., Shirakawa, K., Kobayashi, H., Shimao, M., and Sakazawa, C., Properties of formaldehyde dismutation catalyzing enzyme of Pseudomonas putida F61. Agric. Biol. Chem., 48, 2017-2023 (1984).
  • 18) Kato, N., Yamagami, T., Kitayama, Y., Shimao, M., and Sakazawa, C., Dismutation and cross-dismutation of aldehydes and alcohol: aldehyde oxidoreduction by resting cells of Pseudomonas putida F61a. J. Biotechnol., 1, 295-306 (1984).
  • 19) Kato, N., Yamagami, T., Kitayama, Y., Shimao, M., and Sakazawa, C., Formaldehyde dismutase—a novel NAD-binding oxidoreductase from Pseudomonas putida F61. Eur. J. Biochem., 156, 59-64 (1986).
  • 20) Adroer, N., Casas, C., de Mas, C., and Solà, C., Mechanism of formaldehyde biodegradation by Pseudomonas putida. Appl. Microbiol. Biotechnol., 33, 217-220 (1990).
  • 21) Bryniok, D., and Rodewyk, B., Biological degradation of formaldehyde. BioTec, 10, 16-17 (1998).
  • 22) Bryniok, D., Bakterienstamm mit Power. BioTec, 1/2, 32-33 (2001).
  • 24) Attwood, M. M., and Quayle, J. R., Formaldehyde as a central intermediary metabolite of methylotrophic metabolism. In “Microbial Growth on C1-Compounds”, Proceedings 4th International Symposium ASM, eds. Crawford, R. L., and Hanson, R. S., Washington, D.C., pp. 315-323 (1984).
  • 25) Arfman, N., and Dijkhuizen, L., Methanol dehydrogenase from thermotolerant methylotrophic Bacillus C1. In “Methods in Enzymology”, ed. Lidstrom, M. E., 188, pp. 223-226 (1990).
  • 26) Frank, J., and Duine, J. A., Methanol dehydrogenase from Hyphomicrobium X. In “Methods in Enzymology”, ed. Lidstrom, M. E., 188, pp. 202-209 (1990).
  • 27) Trevors, J. T., Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biol. Biochem., 16, 673-674 (1984).
  • 28) Tani, Y., Miya, T., and Ogata, K., The microbial metabolism of methanol, part II. Properties of crystalline alcohol oxidase from Kloeckera sp. No. 2201. Agric. Biol. Chem., 36, 76-83 (1972).
  • 29) Attwood, M. M., Formaldehyde dehydrogenase from methylotrophs. In “Methods in Enzymology”, ed. Lidstrom, M. E., 188, pp. 314-327 (1990).
  • 30) Babel, W., and Mothes, G., Rolle der Formiat-Dehydrogenase in “Serinweg-Bakterien”. Z. Allg. Mikrobiol., 20, 167-175 (1980).
  • 31) Taylor, S. C., and Dow, C. S., Ribulose-1,5-bisphosphate carboxylase from Rhodomicrobium vannielii. J. Gen. Microbiol., 116, 1-87 (1980).
  • 32) Müller, R. H., and Babel, W., 3-Hexulose-6-phosphate synthase from Acetobacter methanolicus MB 58. In “Methods in Enzymology”, ed. Lidstrom, M. E., 188, pp. 401-405 (1990).
  • 33) Krema, C., and Lidstrom, M. E., Hydroxypyruvate reductase from Methylobacterium extorquens AM1. In “Methods in Enzymology”, ed. Lidstrom, M. E., 188, pp. 373-378 (1990).
  • 34) Bellion, E., and Hersh, L. B., Methylamine metabolism in a Pseudomonas species. Arch. Biochem. Biophys., 153, 368-374 (1972).
  • 35) Lidstrom, M. E., Serine hydroxymethyltransferase from Methylobacterium organophilum XX. In “Methods in Enzymology”, ed. Lidstrom, M. E., 188, pp. 365-372 (1990).
  • 23) Yanase, H., Moriya, K., Mukai, N., Kawata, Y., Okamoto, K., and Kato, N., Effects of GroESL coexpression on the folding of nicotinoprotein formaldehyde dismutase from Pseudomonas putida F61. Biosci. Biotechnol. Biochem., 66, 85-91 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.