223
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of the Pyruvate Permease Gene (JEN1) in Glucose Derepression Yeast (Saccharomyces cerevisiae) Isolated from a 2-Deoxyglucose-tolerant Mutant, and Its Application to ...

, , , , &
Pages 765-771 | Received 03 Oct 2002, Accepted 26 Dec 2002, Published online: 22 May 2014

  • 1) Whiting, G. C., Organic acid metabolism of yeasts during fermentation of alcoholic beverages-a review. J. Inst. Brew., 82, 84-92 (1976).
  • 2) Pronk, J. T., Steensma, H. Y., and van Dijken, J. P., Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12, 1607-1633 (1996).
  • 3) Mizoguchi, H., and Hara, S., Reduction of pyruvic acid in Sake mash by enzymatic reaction of pyruvate decarboxylase in permeabilized cells. Seibutsukougakkaishi (in Japanese), 73, 37-42 (1995).
  • 4) Casal, M., Paiva, S., Andrade, R. P., Gancedo, C., and Leao, C., The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J. Bacteriol., 181, 2620-2623 (1999).
  • 5) Akita, O., Nishimori, C., Shimamoto, T., Fujii, T., and Iefuji, H., Transport of pyruvate in Saccharomyces cerevisiae and cloning of the gene encoded pyruvate permease. Biosci. Biotechnol. Biochem., 64, 980-984 (2000).
  • 6) Gancedo, J. M., Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev., 62, 334-361 (1998).
  • 7) Bojunga, N., and Entian, K.-D., Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon-source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol. Gen. Genet., 262, 869-875 (1999).
  • 8) Zimmermann, F. K., and Scheel, I., Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol. Gen. Genet., 154, 75-82 (1977).
  • 9) Czok, R., and Lamprecht, W., Pyruvate, Phosphoenolpyruvate and D-Glycerate-2-phosphate (UV-method). In “Methods of Enzymatic Analysis”, ed. Bergmeyer, H. U., Verlag Chemie, Weinheim/Academic Press, Inc., New York and London, pp. 1446-1451 (1974).
  • 10) Andrade, R. P., and Casal, M., Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Gent. Biol., 32, 105-111 (2001).
  • 11) Sharman, F., Fink, G. R., and Hicks, J. B., Methods in yeast genetics: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1986).
  • 12) Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular cloning: a laboratory manual, 2nd, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
  • 13) Namba, Y., Obata, T., Kayashima, S., Yamasaki, Y., Murakami, M., and Shimoda, T., Method of small scale brewing test. J. Brew. Soc. Japan (in Japanese), 73, 295-300 (1978).
  • 14) Kizaki, Y., Fukuda, H., and Takahashi, K., Changes in components of Kijou-shu, a type of sake, during aging. J. Brew. Soc. Japan (in Japanese), 93, 148-152 (1998).
  • 15) The Annotation of the Official Methods of the National Tax Administration Agency of Japan (in Japanese), Tokyo (1987).
  • 16) Haurie, V., Perrot, M., Mini, T., Jeno, P., Sagliocco, F., and Boucherie, H., The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J. Biol. Chem., 276, 76-85 (2001).
  • 17) Mizuno, A., Iwahuti, M., Kiso, K., Sato, K., and Takahashi, T., High malic-acid producing strains isolated from 2-deoxyglucose resistant mutants of sake yeast. J. Brew. Soc. Japan (in Japanese), 97, 228-233 (2002).
  • 18) Muratsubaki, H., Regulation of reductive production of succinate under anaerobic conditions in baker's yeast. J. Biochem., 102, 705-714 (1987).
  • 19) Wakai, Y., Shimazaki, T., and Hara, S., Formation of succinate during fermentation of sake mash and grape must. Hakkokogaku (in Japanese), 58, 363-368 (1980).
  • 20) Magarifuchi, T., Goto, K., Iimura, Y., Tadenuma, M., and Tamura, G., Effect of yeast fumarase gene (FUM1) disruption on production of malic, fumaric and succinic acids in sake mash. J. Ferment. Bioeng., 80, 355-361 (1995).
  • 21) Arikawa, Y., Kobayashi, M., Kodaira, R., Shimosaka, M., Muratsubaki, H., Enomoto, K., and Okazaki, M., Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. J. Biosci. Bioeng., 87, 333-339 (1999).
  • 22) Akamatsu, S., Kamiya, H., Yamashita, N., Motoyoshi, T., Goto-Yamamoto, N., Ishikawa, T., Okazaki, N., and Nishimura, A., Effects of aldehyde dehydrogenase and acetyl-CoA synthetase on acetate formation in sake mash. J. Biosci. Bioeng., 90, 555-560 (2000).
  • 23) Pines, O., Even-Ram, S., Elnathan, N., Battat, E., Aharonov, O., Gibson, D., and Goldberg, I., The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase. Appl. Microbiol. Biotechnol., 46, 393-399 (1996).
  • 24) Pines, O., Shemesh, S., Battat, E., and Goldberg, I., Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 48, 248-255 (1997).
  • 25) Asano, T., Kurose, N., Hiraoka, N., and Kawakita, S., Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash. J. Biosci. Bioeng., 88, 258-263 (1999).
  • 26) Kratzer, S., and Schuller, H.-J., Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6. Mol. Microbiol., 26, 631-641 (1997).
  • 27) Sato, S., Oba, T., Takahashi, K., Kokubu, S., Kobayashi, M., and Kobayashi, K., Studies on taste of sake. VII. J. Brew. Soc. Japan (in Japanese), 72, 801-805 (1977).
  • 28) Lodi, T., Fontanesi, F., and Guiard, B., Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1. Mol. Genet. Genomics, 266, 838-847 (2002).
  • 29) Ogawa, Y., Nitta, A., Uchiyama, H., Imamura, T., Shimoi, H., and Ito, K., Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J. Biosci. Bioeng., 90, 313-320 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.