170
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Elevation of Intracellular cAMP Levels by Dominant Active Heterotrimeric G Protein Alpha Subunits ScGP-A and ScGP-C in Homobasidiomycete, Schizophyllum commune

, , , &
Pages 1017-1026 | Received 10 Sep 2003, Accepted 19 Jan 2004, Published online: 22 May 2014

  • 1) Yun, C. W., Tamaki, H., Nakayama, R., Yamamoto, K., and Kumagai, H., Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 252, 29–33 (1998).
  • 2) Alspaugh, J. A., Perfect, J. R., and Heitman, J., Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev., 11, 3206–3217 (1997).
  • 3) Kruger, J., Loubradou, G., Wanner, G., Regenfelder, E., Feldbrugge, M., and Kahmann, R., Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol. Plant Microbe. Interact., 13, 1034–1040 (2000).
  • 4) Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M., In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell, 40, 27–36 (1985).
  • 5) Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T., and Yamamoto, M., Role of ras homolog in the life cycle of Schizosaccharomyces pombe. Cell, 44, 329–336 (1986)
  • 6) Alspaugh, J. A., Pukkila-Worley, R., Harashima, T., Cavallo, L. M., Funnell, D., Cox, G. M., Perfect, J. R., Kronstad, J. W., and Heitman, J., Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell, 1, 75–84 (2002).
  • 7) Kruger, J., Loubradou, G., Regenfelder, E., Hartmann, A., and Kahmann, R., Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol. Gen. Genet., 260, 193–198 (1998).
  • 8) Leberer, E., Harcus, D., Dignard, D., Johnson, L., Ushinsky, S., Thomas, D. Y., and Schroppel, K., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol., 42, 673–687 (2001).
  • 9) Lee, N., and Kronstad, J. W., ras2 Controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell, 1, 954–966 (2002).
  • 10) Kües, U., Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev., 64, 316–353 (2000).
  • 11) Kinoshita, H., Sen, K., Iwama, H., Samadder, P. P., Kurosawa, S., and Shibai, H., Effects of indole and caffeine on cAMP in the ind1 and cfn1 mutant strains of Schizophyllum commune during sexual development. FEMS Microbiol. Lett., 206, 247–251 (2002).
  • 12) Yli-Mattila, T., The effect of UV-A light on cAMP level in the basidiomycete Schizophyllum commune. Physiol. Plant., 69, 451–455 (1987).
  • 13) Boominathan, K., and Reddy, C. A., cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc. Natl. Acad. Sci. USA, 89, 5586–5590 (1992).
  • 14) MacDonald, M. J., Paterson, A., and Broda, P., Possible relationship between cyclic AMP and idiophasic metabolism in the white rot fungus Phanerochaete chrysosporium. J. Bacteriol., 160, 470–472 (1984).
  • 15) Reddy, C. A., and D’Souza, T. M., Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev., 13, 137–152 (1994).
  • 16) Hori, K., Kajiwara, S., Saito, T., Miyazawa, H., Katayose, Y., and Shishido, K., Cloning, sequence analysis and transcriptional expression of a ras gene of the edible basidiomycete Lentinus edodes. Gene, 105, 91–96 (1991).
  • 17) Ishibashi, O., and Shishido, K., Basidiomycetous ras cDNA functionally replaces its homolog genes in yeast. Curr. Genet., 25, 30–33 (1994).
  • 18) Ishibashi, O., and Shishido, K., Nucleotide sequence of a ras gene from the basidiomycete Coprinus cinereus. Gene, 125, 233–234 (1993).
  • 19) Raudaskoski, M., Pardo, A. G., Tarkka, M. T., Gorfer, M., Hanif, M., and Laitiainen, E., Small GTPases, cytoskeleton and signal transduction in filamentous homobasidiomycetes. In “Cell Biology of Plant and Fungal Tip Growth”, eds. Geitmann, A., Cresti, M., and Heath, I. B., IOS Press, pp. 123–136 (2001).
  • 20) Sundaram, S., Kim, S. J., Suzuki, H., Mcquattie, C. J., Hiremah, S. T., and Podila, G. K., Isolation and characterization of a symbiosis-regulated ras from the ectomycorrhizal fungus Laccaria bicolor. Mol. Plant. Microbe. Interact., 14, 618–628 (2001).
  • 21) Yamagishi, K., Kimura, T., Suzuki, M., and Shinmoto, H., Suppression of fruit-body formation by constitutively active G-protein alpha-subunits ScGP-A and ScGP-C in the homobasidiomycete Schizophyllum commune. Microbiology, 148, 2797–2809 (2002).
  • 22) Kozak, K. R., and Ross, I. K., Signal transduction in Coprinus congregatus: evidence for the involvement of G proteins in blue-light photomorphogenesis. Biochem. Biophys. Res. Commun., 179, 1225–1231 (1991).
  • 23) Kozak, K. R., Foster, L. M., and Ross, I. K., Cloning and characterization of a G protein alpha-subunit encoding gene from the basidiomycete, Coprinus congregatus. Gene, 163, 133–137 (1995).
  • 24) Bartholomew, K. A., Marion, A. L., Novotny, C. P., and Ullrich, R. C., A case study in fungal development and genetics. In “Fungal Genetics”, ed. Bos, C. J., Marcel Dekker Inc., pp. 371–384 (1996).
  • 25) Liu, Y. G., and Whittier, R. F., Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 25, 674–681 (1995).
  • 26) Clackson, T., and Winter, G., ‘Sticky feet’-directed mutagenesis and its application to swapping antibody domains. Nucleic Acids Res., 17, 10163–10170 (1989).
  • 27) Schuren, F. H., and Wessels, J. G., Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune: homologies with a gene not regulated by mating-type genes. Gene, 90, 199–205 (1990).
  • 28) Lugones, L. G., Scholtmeijer, K., Klootwijk, R., and Wessels, J. G., Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol. Microbiol., 32, 681–689 (1999).
  • 29) Harmsen, M. C., Schuren, F. H., Moukha, S. M., van Zuilen, C. M., Punt, P. J., and Wessels, J. G., Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr. Genet., 22, 447–454 (1992).
  • 30) Munoz-Rivas, A. M., Specht, C. A., Ullrich, R. C., and Novotny, C. P., Isolation of the DNA sequence coding indole-3-glycerol phosphate synthetase and phosphoribosylanthranilate isomerase of Schizophyllum commune. Curr. Genet., 10, 909–913 (1986).
  • 31) Munoz-Rivas, A., Specht, C. A., Drummond, B. J., Froeliger, E., Novotny, C. P., and Ullrich, R. C., Transformation of the basidiomycete, Schizophyllum commune. Mol. Gen. Genet., 205, 103–106 (1986).
  • 32) Waugh, M. S., Nichols, C. B., DeCesare, C. M., Cox, G. M., Heitman, J., and Alspaugh, J. A., Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology, 148, 191–201 (2002).
  • 33) Alspaugh, J. A., Cavallo, L. M., Perfect, J. R., and Heitman, J., RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol., 36, 352–365 (2000).
  • 34) Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H. R., and Wittinghofer, A., Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct. Biol., 2, 36–44 (1995).
  • 35) Miller, A. C., Gafner, J., Clark, E. P., and Samid, D., Posttranscriptional down-regulation of ras oncogene expression by inhibitors of cellular glutathione. Mol. Cell. Biol., 13, 4416–4422 (1993).
  • 36) Wösten, H. A., van Wetter, M. A., Lugones, L. G., van der Mei, H. C., Busscher, H. J., and Wessels, J. G., How a fungus escapes the water to grow into the air. Curr. Biol., 9, 85–88 (1999).
  • 37) Horton, J. S., Palmer, G. E., and Smith, W. J., Regulation of dikaryon-expressed genes by FRT1 in the basidiomycete Schizophyllum commune. Fungal Genet. Biol., 26, 33–47 (1999).
  • 38) Lengeler, K. B., and Kothe, E., Mated: a putative peptide transporter of Schizophyllum commune expressed in dikaryons. Curr. Genet., 36, 159–164 (1999).
  • 39) van Wetter, M. A., Wosten, H. A., and Wessels, J. G., SC3 and SC4 hydrophobins have distinct roles in formation of aerial structures in dikaryons of Schizophyllum commune. Mol. Microbiol., 36, 201–210 (2000).
  • 40) Isshiki, T., Mochizuki, N., Maeda, T., and Yamamoto, M., Characterization of a fission yeast gene, gpa2, that encodes a G alpha subunit involved in the monitoring of nutrition. Genes Dev., 6, 2455–2462 (1992).
  • 41) Morris, A. J., and Malbon, C. C., Physiological regulation of G protein-linked signaling. Physiol. Rev., 79, 1373–1430 (1999).
  • 42) Wendland, J., Vaillancourt, L. J., Hegner, J., Lengeler, K. B., Laddison, K. J., Specht, C. A., Raper, C. A., and Kothe, E., The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J., 14, 5271–5278 (1995).
  • 43) Vaillancourt, L. J., Raudaskoski, M., Specht, C. A., and Raper, C. A., Multiple genes encoding pheromones and a pheromone receptor define the B beta 1 mating-type specificity in Schizophyllum commune. Genetics, 146, 541–551 (1997).
  • 44) Regenfelder, E., Spellig, T., Hartmann, A., Lauenstein, S., Bolker, M., and Kahmann, R., G proteins in Ustilago maydis: transmission of multiple signals? EMBO J., 16, 1934–1942 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.