183
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Isolation of Flavohemoglobin from the Actinomycete Streptomyces antibioticus Grown without External Nitric Oxide Stress

, , &
Pages 1106-1112 | Received 09 Dec 2003, Accepted 10 Feb 2004, Published online: 22 May 2014

  • 1) Zumft, W. G., Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61, 533–616 (1997).
  • 2) Alderton, W. K., Cooper, C. E., and Knowles, R. G., Nitric oxide synthases: structure, function, and inhibition. Biochem. J., 357, 593–615 (2001).
  • 3) Kennedy, M. C., Antholine, W. E., and Beinert, H., An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem., 272, 20340–20347 (1997).
  • 4) Adak, S., Bilwes, A. M., Panda, K., Hosfield, D., Aulak, K. S., McDonald, J. F., Tainer, J. A., Getzoff, E. D., Crane, B. R., and Stuehr, D. J., Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Proc. Nat. Acad. Sci. USA, 99, 107–112 (2002).
  • 5) Pant, K., Bilwes, A. M., Adak, S., Stuehr, D. J., and Crane, B. R., Structure of a nitric oxide synthase heme protein from Bacillus subtilis. Biochemistry, 41, 11071–11079 (2002).
  • 6) Hong, I.-S., Kim, Y.-K., Choi, W.-S., Seo, D.-W., Yoon, J.-W., Han, J.-W., Lee, H.-Y., and Lee, H.-W., Purification and characterization of nitric oxide synthase from Staphylococcus aureus. FEMS Microbiol. Lett., 222, 177–182 (2003).
  • 7) Poole, R. K., and Hughes, M., New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol., 36, 775–783 (2000).
  • 8) Gardner, A. M., and Gardner, P. R., Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli: Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J. Biol. Chem., 277, 8166–8171 (2002).
  • 9) Nakahara, K., Tanimoto, T., Hatano, K., Usuda, K., and Shoun, H., Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem., 268, 8350–8355 (1993).
  • 10) Takaya, N., and Shoun, H., Nitric oxide reduction, the last step in denitrification by Fusarium oxysporum, is obligatorily mediated by cytochrome P450nor. Mol. Gen. Genet., 263, 342–348 (2000).
  • 11) Kobayashi, M., Matsuo, Y., Takimoto, A., Suzuki, S., Maruo, F., and Shoun, H., Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J. Biol. Chem., 271, 16263–16267 (1996).
  • 12) Gardner, A. M., Helmick, R. A., and Gardner, P. R., Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem., 277, 8172–8177 (2002).
  • 13) Gardner, P. R., Gardner, A. M., Martin, L. A., and Salzman, A. L., Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA, 95, 10378–10383 (1998).
  • 14) Hausladen, A., Grow, A. J., and Stamler, J. S., Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA, 95, 14100–14105 (1998).
  • 15) Ermler, U., Siddiqui, R. A., Cramm, R., and Friedrich, B., Crystal structure of the flavohemoglobin from Alcaligenes eutrophus at 1.75 Å resolution. EMBO J., 14, 6067–6077 (1995).
  • 16) Crawford, M. J., and Goldberg, D. E., Role for the Salmonella flavohemoglobin in protection from nitric oxide. J. Biol. Chem., 273, 12543–12547 (1998).
  • 17) Zhu, H., and Riggs, A. F., Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc. Natl. Acad. Sci. USA, 89, 5015–5019 (1992).
  • 18) Takaya, N., Suzuki, S., Matsuo, M., and Shoun, H., Purification and characterization of flavohemoglobin from the denitrifying fungus Fusarium oxysporum. FEBS Lett., 414, 545–548 (1997).
  • 19) Cramm, R., Siddiqui, R. A., and Friedrich, F., Primary sequence and evidence for a physiological function of the flavohemoprotein of Alcaligenes eutrophus. J. Biol. Chem., 269, 7349–7354 (1994).
  • 20) Kumon, Y., Sasaki, Y., Kato, I., Takaya, N., Shoun, H., and Beppu, T., Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in Streptomyces antibioticus. J. Bacteriol., 184, 2963–2968 (2002).
  • 21) Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A.-M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, F., Goble, A., Hidalyo, J., Hornsby, T., Howarth, S., Huang, G.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeyer, K., Saunders, D., Sharp, S., Squares, R., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., and Hopwood, D. A., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147 (2002).
  • 22) Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y., and Hattori, M., Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA, 98, 12215–12220 (2001).
  • 23) Falk, J. E., “Porphyrins and Metalloporphyrins”, Elsevier, Amsterdam (1964).
  • 24) Thomas, P. E., Ryan, D., and Levin, W., An improved staining procedure for the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal. Biochem., 75, 168–176 (1976).
  • 25) Faeder, E. J., and Siegel, L. M., A rapid micromethod for determination of FMN and FAD in mixtures. Anal. Biochem., 53, 332–336 (1973).
  • 26) Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S., and Horikoshi, K., Complete genome sequence of the alkalophilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucl. Acid Res., 28, 4317–4331 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.