525
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Identification of High Molecular Weight Proteins in Squid Muscle by Western Blotting Analysis and Postmortem Rheological Changes

, , &
Pages 1119-1124 | Received 05 Jan 2004, Accepted 13 Feb 2004, Published online: 22 May 2014

  • 1) Takahashi, K., Hattori, A., Tatsumi, R., and Takai, K., Calcium-induced splitting of connectin filaments into β-connectin and a 1,200-kDa subfragment. J. Biochem., 111, 778–782 (1992).
  • 2) Maruyama, K., Matsubara, S., Natori, R., Nonomura, Y., Kimura, S., Ohashi, K., Murakami, F., Handa, S., and Eguchi, G., Connectin, an elastic protein of muscle. Characterization and function. J. Biochem., 82, 317–337 (1977).
  • 3) Wang, K., McClure, J., and Tu, A., Titin: major myofibrillar components of striated muscle. Proc. Natl. Acad. Sci. USA, 76, 3698–3702 (1979).
  • 4) Maruyama, K., Kimura, M., Kimura, S., Ohashi, K., Suzuki, K., and Katsunuma, N., Connectin, an elastic protein of muscle. Effects of proteolytic enzymes in situ. J. Biochem., 89, 711–715 (1981).
  • 5) Takahashi, K., and Saito, H., Post-mortem changes in skeletal muscle connectin. J. Biochem., 85, 1539–1542 (1979).
  • 6) Seki, N., and Watanabe, T., Connectin content and its post-mortem changes in fish muscle. J. Biochem., 95, 1161–1167 (1984).
  • 7) Kimura, S., Miyaki, T., Takema, Y., and Kubota, M., Electrophoretic analysis of connectin from the muscle of aquatic animals. Bull. Japan. Soc. Sci. Fish., 47, 787–791 (1981).
  • 8) Lusby, M. L., Ridpath, J. F., Parrish, Jr. F. C., and Robson, R. M., Effect of postmortem storage on degradation of the myofibrillar protein titin in bovine longissimus muscle. J. Food Sci., 48, 1787–1790 (1983).
  • 9) Paterso, B. C. and Parrish, Jr. F. C., SDS-PAGE conditions for detection of titin and nebulin in tender and tough bovine muscles. J. Food Sci., 52, 509–510 (1987).
  • 10) Mitsuhashi, T., Kasai, M., and Hatae, K., Detection of giant myofibrillar proteins connectin and nebulin in fish meat by electrophoresis in 3–5% gradient sodium dodecyl sulfate polyacrylamide slab gels. J. Agric. Food Chem., 50, 7499–7503 (2002).
  • 11) Maruyama, K., Kimura, S., Yoshidome, H., Sawada, H., and Kikuchi, M., Molecular size and shape of β-connectin, an elastic protein of striated muscle. J. Biochem., 95, 1423–1433 (1984).
  • 12) Tsuchiya, H., Kita, S., and Seki, N., Postmortem changes in α-actinin and connectin in carp and rainbow trout muscles. Bull. Japan. Soc. Sci. Fish., 58, 793–798 (1992).
  • 13) Kumano, Y., and Seki, N., Changes in α-connectin content during storage of iced, frozen, and thawed fish muscles. Bull. Japan. Soc. Sci. Fish., 59, 559–564 (1993).
  • 14) Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi, K., Kimura, S., and Natori, R., Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J. Cell. Biol., 101, 2167–2172 (1985).
  • 15) Itoh, Y., Suzuki, T., Kimura, S., Ohashi, K., Higuchi, H., Sawada, H., Shimizu, T., Shibata, M., and Maruyama, K., Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J. Biochem., 104, 504–508 (1988).
  • 16) Fritz, J. D., and Greaser, M. L., Changes in titin and nebulin in postmortem bovine muscle revealed by gel electrophoresis, western blotting and immunofluorescence microscopy. J. Food Sci., 56, 607–610 (1991).
  • 17) Kawamura, Y., Ohtani, Y., and Maruyama, K., Biodiversity of the localization of the epitopes to connectin antibodies in the sarcomeres of lamprey, electric ray, and horse mackerel skeletal muscles. Tissue and Cell, 26, 677–685 (1994).
  • 18) Hu, D. H., Kimura, S., and Maruyama, K., Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J. Biochem., 99, 1485–1492 (1986).
  • 19) Ziegler, C., Titin-related proteins in invertebrate muscles. Comp. Biochem. Physiol., 109a, 823–833 (1994).
  • 20) Royuela, M., Fraile, B., Paz de Miguel, M., Cervera, M., and Paniagua, R., Immunohistochemical study and western blotting analysis of titin-like proteins in the striated muscle of Drosophila melanogaster and in the striated and smooth muscle of the oligochaete Eisenia foetida. Microscopy Research and Technique, 35, 349–356 (1996).
  • 21) Manabe, T., Kawamura, Y., Higuchi, H., Kimura, S., and Maruyama, K., Connectin, giant elastic protein, in giant sarcomeres of crayfish claw muscle. J. Muscle Res. Cell Motil., 14, 654–665 (1993).
  • 22) Nakamura, K., Ishikawa, S., Kimoto, K., and Mizuno, Y., Changes in freshness of Japanese common squid during cold storage. Bull. Tokai Reg. Fish. Res. Lab., 118, 45–83 (1985).
  • 23) Yoshioka, T., Kinoshita, Y., Yoshino, H., Park, S., Konno, K., and Seki, N., Change in translucency of squid mantle muscle upon storage. Fisheries Science, 69, 408–413 (2003).
  • 24) Kugino, M., Kugino, K., and Ogawa, T., Changes in microstructure and rheological properties of squid mantle during storage. Food Sci. Technol. Int. Tokyo, 3, 157–162 (1997).
  • 25) Kagawa, M., Matsumoto, M., and Hatae, K., Differences in texture among three varieties of squid and effect of cold storage on the texture. J. Home Econ. Jpn., 51, 699–708 (2000).
  • 26) Kagawa, M., Matsumoto, M., Yoneda, C., Mitsuhashi, T., and Hatae, K., Changes in meat texture of three varieties of squid in the early stage of cold storage. Fisheries Science, 68, 783–792 (2002).
  • 27) Ohtsuka, S., Kimura, S., Kawamura, Y., Hirono, Y., and Maruyama, K., Chicken leg muscle α-connectin as studied by a monoclonal antibody to the 1200 kDa fragment. Comp. Biochem. Physiol., 103B, 543–546 (1992).
  • 28) Suzuki, T., Sawada, H., and Maruyama, K., Localization of connectin and nebulin in chicken breast muscle by immunoelectron microscopy. Biomed. Res., 8, 285–287 (1987).
  • 29) Hu, D. H., Kimura, S., and Maruyama, K., Myosin oligomers as the molecular mass standard in the estimation of molecular mass of nebulin (∼800 kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biomed. Res., 10, 165–168 (1989).
  • 30) Seki, N., and Tsuchiya, H., Extensive changes during storage in carp myofibrillar proteins in relation to fragmentation. Bull. Japan. Soc. Sci. Fish., 57, 927–933 (1991).
  • 31) Kawamura, Y., Suzuki, J., Kimura, S., and Maruyama, K., Characterization of connectin-like proteins of obliquely striated muscle of polychaete (Annelida). J. Muscle Res. Cell Motil., 15, 623–632 (1994).
  • 32) Royuela, M., Fraile, B., and Paniagua, R., Nebulin-like protein in the earthworm Eisenia foetida. Immunocytochemical electron microscopic study and western blot analysis of several muscle cell types. Eur. J. Cell. Biol., 73, 276–280 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.