333
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dissection of the Selenomonas ruminantium Cell Envelope and Lysine Decarboxylase Involved in the Biosynthesis of a Polyamine Covalently Linked to the Cell Wall Peptidoglycan Layer

&
Pages 1-19 | Published online: 22 May 2014

  • 1) Bryant, M. P., and Robinson, I. M., Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol., 84, 605–614 (1962).
  • 2) Kanegasaki, S., and Takahashi, H., Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium. J. Bacteriol., 93, 456–463 (1967).
  • 3) Kanegasaki, S., and Takahashi, H., Function of growth factors for rumen microorganisms. II. Metabolic fate of incorporated fatty acids in Selenomonas ruminantium. Biochim. Biophys. Acta, 152, 40–49 (1968).
  • 4) Kanegasaki, S., and Numa, S., Medium-chain fatty acyl-CoA requirement for long-chain fatty acid synthesis in some anaerobic bacteria. Biochim. Biophys. Acta, 202, 436–446 (1970).
  • 5) Kamio, Y., and Takahashi, H., Outer membrane proteins and cell surface structure of Selenomonas ruminantium. J. Bacteriol., 141, 899–907 (1980).
  • 6) Kamio, Y., Itoh, Y., Terawaki, Y., and Kusano, T., A new form of structural peptidoglycan in Selenomonas ruminantium: existence of polyamine in peptidoglycan (Short communication). Agric. Biol. Chem., 44, 2523–2526 (1980).
  • 7) Kamio, Y., Itoh, Y., Terawaki, Y., and Kusano, T., Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. J. Bacteriol., 145, 122–128 (1981).
  • 8) Kamio, Y., Itoh, Y., and Terawaki, Y., Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic acid residue of peptidoglycan. J. Bacteriol., 146, 49–53 (1981).
  • 9) Kamio, Y., Pösö, H., Terawaki, Y., and Paulin, L., Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. J. Biol. Chem., 261, 6585–6589 (1986).
  • 10) Kamio, Y., Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J. Bacteriol., 169, 4837–4840 (1987).
  • 11) Kamio, Y., Terawaki, Y., and Izaki, K., Biosynthesis of cadaverine-containing peptidoglycan in Selenomonas ruminantium. J. Biol. Chem., 257, 3326–3333 (1982).
  • 12) Kamio, Y., and Terawaki, Y., Purification and properties of Selenomonas ruminantium lysine decarboxylase. J. Bacteriol., 153, 658–664 (1983).
  • 13) Takatsuka, Y., Onoda, M., Sugiyama, T., Muramoto, K., Tomita, T., and Kamio, Y., Novel characteristics of Selenomonas ruminantium lysine decarboxylase capable of decarboxylating both L-lysine and L-ornithine. Biosci. Biotechnol. Biochem., 63, 1063–1069 (1999).
  • 14) Takatsuka, Y., Tomita, T., and Kamio, Y., Identification of the amino acid residues conferring substrate specificity upon Selenomonas ruminantium lysine decarboxylase. Biosci. Biotechnol. Biochem., 63, 1843–1846 (1999).
  • 15) Takatsuka, Y., Yamaguchi, Y., Ono, M., and Kamio, Y., Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J. Bacteriol., 182, 6732–6741 (2000).
  • 16) Yamaguchi, Y., Takatsuka, Y., and Kamio, Y., Identification of a 22-kDa protein required for the degradation of Selenomonas ruminantium lysine decarboxylase by ATP-dependent protease. Biosci. Biotechnol. Biochem., 66, 1431–1434 (2002).
  • 17) Kingsley, V. V., and Hoeniger, J. F. M., Growth, structure, and classification of Selenomonas. Bacteriol. Rev., 37, 479–521 (1973).
  • 18) Rapport, M. M., and Norton, W. T., Chemistry of the lipids. Annu. Rev. Biochem., 31, 103–138 (1962).
  • 19) Thompson, G. A. Jr., and Hanahan, D. J., Studies on the nature and formation of alpha-glyceryl ether lipids in bovine bone marrow. Biochemistry, 128, 641–646 (1963).
  • 20) Pietruszko, R., Lipids of red bone marrow from pig epiphyses. Biochim. Biophys. Acta, 64, 562–564 (1962).
  • 21) Nakagawa, S., and Mckibbin, J. M., Distribution of alpha glyceryl ethers in animal tissues. Proc. Soc. Exp. Biol. Med., 111, 634–636 (1962).
  • 22) Thompson, G. A. Jr., and Hanahan, D. J., Identification of alpha-glyceryl ether phospholipids as major lipid constituents in two species of terrestrial slug. J. Biol. Chem., 238, 2628–2631 (1963).
  • 23) Kamio, Y., Kim, K. C., and Takahashi, H., Glyceryl ether phospholipids in Selenomonas ruminantium. J. Gen. Appl. Microbiol., 16, 291–300 (1970).
  • 24) Sehgal, S. N., Kates, M., and Gibbons, N. E., Lipids of Halobacterium cutirubrum. Can. J. Med. Sci., 40, 69–81 (1962).
  • 25) Kamio, Y., Kanegasaki, S., and Takahashi, H., Fatty acid and aldehyde compositions in phospholipids of Selenomonas ruminantium with reference to growth conditions. J. Gen. Appl. Microbiol., 16, 29–37 (1970).
  • 26) Allison, M. J., Bryant, M. P., Katz, I., and Keeney, M., Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J. Bacteriol., 83, 1084–1093 (1962).
  • 27) Wegner, G. H., and Foster, E. M., Incorporation of isobutyrate and valerate into cellular plasmalogen by bacteroides succinogenes. J. Bacteriol., 85, 53–61 (1963).
  • 28) Wegner, G. H., The metabolic fate of fatty acids required by certain rumen bacteria. Thesis, University of Wisconsin, Madison (1962).
  • 29) Baumann, N. A., Hagen, P. O., and Goldfine, H., Phospholipids of Clostridium butyricum. Studies on plasmalogen composition and biosynthesis. J. Biol. Chem., 240, 1559–1567 (1965).
  • 30) Katz, I., and Keeney, M., The isolation of fatty aldehydes from rumen-microbial lipid. Biochim. Biophys. Acta, 84, 128–132 (1964).
  • 31) Kamio, Y., Kanegasaki, S., and Takahashi, H., Occurrence of plasmalogens in anaerobic bacteria. J. Gen. Appl. Microbiol., 15, 439–451 (1969).
  • 32) Kim, K. C., Kamio, Y., and Takahashi, H., Glyceryl ether phospholipids in anaerobic bacteria. J. Gen. Appl. Microbiol., 16, 321–325 (1970).
  • 33) Meyer, H., and Meyer, F., Lipid metabolism in the parasitic and free-living spirochetes Treponema pallidum (Reiter) and Treponema zuelzerae. Biochim. Biophys. Acta, 231, 93–106 (1971).
  • 34) Matthews, H. M., Yang, T. K., and Jenkin, H. M., Alk-1enyl-ether phospholipids (plasmalogens) and glycolipids of Treponema hyodysenteriae. Analysis of acyl and alk-1enyl moieties. Biochim. Biophys. Acta, 618, 273–281 (1980).
  • 35) Clejan, S., Guffanti, A. A., Cohen, M. A., and Krulwich, T. A., Mutation of Bacillus firmus OF4 to duramycin resistance results in substantial replacement of membrane lipid phosphatidylethanolamine by its plasmalogen form. J. Bacteriol., 171, 1744–1746 (1989).
  • 36) Wagner, F., Rottem, S., Held, H.-d., Uhlig, S., and Zahringer, U., Ether lipids in the cell membrane of Mycoplasma fermentans. Eur. J. Biochem., 267, 6274–6286 (2000).
  • 37) Rutters, H., Sass, H., Cypionka, H., and Rullkotter, J., Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch. Microbiol., 176, 435–442 (2001).
  • 38) Paltauf, F., Ether lipids in biomembranes. Chem. Phys. Lipid, 74, 101–139 (1994).
  • 39) Kamio, Y., Inagaki, H., and Takahashi, H., Possible occurrence of α-oxidation in phospholipid biosynthesis in Selenomonas ruminantium. J. Gen. Appl. Microbiol., 16, 463–478 (1970).
  • 40) Hitchcock, C., and James, A. T., The mechanism of α-oxidation in leaves. Biochim. Biophys. Acta, 116, 413–424 (1966).
  • 41) Avins, L. R., Studies on alpha oxidation of stearic acid by Tetrahymena pyriformis and Crithidia fasiculata. Biochem. Biophys. Res. Commun., 32, 138–142 (1968).
  • 42) Watanabe, T., Okuda, S., and Takahashi, H., Physiological importance of even-numbered fattay acids and aldehydes in plasmalogen phospholipids of Selenomonas ruminantium. J. Gen. Appl. Microbiol., 28, 23–33 (1982).
  • 43) Fulco, A. J., Chain elongation, 2-hydroxylation, and decarboxylation of long chain fatty acids by yeast. J. Biol. Chem., 242, 3608–3613 (1967).
  • 44) Martin, R. O., and Stumpf, P. K., Fat metabolism in higher plants. XII. α-oxidation of long chain fatty acids. J. Biol. Chem., 234, 2548–2554 (1959).
  • 45) Hitchcock, C., and James, A. T., Oxidation of unsaturated fatty acids by leaf tissue. J. Lipid Res., 53, 593–599 (1964).
  • 46) Lippel, K., and Mead, J. F., Alpha-oxidation of 2-hydroxystearic acid in vitro. Biochim. Biophys. Acta, 152, 669–680 (1968).
  • 47) MacDonald, R. C., and Mead, J. F., The α-oxidation system of brain microsomes, cofactors for α-hydroxy acid decarboxylation. Lipids, 3, 275–283 (1968).
  • 48) Watanabe, T., Okuda, S., and Takahashi, H., Turn-over of phospholipids in Selenomonas ruminantium. J. Biochem., 95, 521–527 (1984).
  • 49) Kamio, Y., and Takahashi, H., Isolation and characterization of outer and inner membranes of Selenomonas ruminantium: lipid compositions. J. Bacteriol., 141, 888–898 (1980).
  • 50) Shibuya, I., Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog. Lipid Res., 31, 245–299 (1992).
  • 51) Dowhan, W., Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem., 66, 199–232 (1997).
  • 52) Chattopadhyay, P. K., and Wu, H. C., Biosynthesis of the covalently linked diglyceride in murein lipoprotein in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 74, 5318–5322 (1977).
  • 53) Chattopadhyay, P. K., Lai, J. S., and Wu, H. C., Incorporation of phosphatidylglycerol into murein lipoprotein in intact cells of Salmonella typhimurium by phospholipid vesicle fusion. J. Bacteriol., 137, 309–312 (1979).
  • 54) Hayashi, S., and Wu, H. C., Lipoproteins in bacteria (Mini-review). J. Bioenerg. Biomembr., 22, 451–471 (1990).
  • 55) Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., and Shao, Y., The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1474 (1997).
  • 56) Braun, V., and Rehn, K., Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli wall. The specific effects of trypsin on the membrane structure. Eur. J. Biochem., 10, 426–438 (1969).
  • 57) Braun, V., and Wolff, H., The murein-lipoprotein linkage in the cell wall of Escherichia coli. Eur. J. Biochem., 14, 387–391 (1970).
  • 58) Kamio, Y., Kim, K. C., and Takahashi, H., Chemical structure of lipid A of Selenomonas ruminantium. J. Biochem., 70, 187–191 (1971).
  • 59) Kamio, Y., Kim, K. C., and Takahashi, H., Identification of the basic structure of a glycolipid from Selenomonas ruminantium as β-glucosaminyl-1,6-glucosamine. Agric. Biol. Chem., 36, 2195–2201 (1972).
  • 60) Kamio, Y., Kim, K. C., and Takahashi, H., Characterization of lipid A, a component of lipopolysaccharides from Selenomonas ruminantium. Agric. Biol. Chem., 36, 2425–2432 (1972).
  • 61) Gmeiner, J., Lüderitz, O., and Westphal, O., Biochemical studies on lipopolysaccharides of Salmonella R mutants. VI. Investigations on the structure of the lipid A component. Eur. J. Biochem., 7, 370–379 (1969).
  • 62) Taylor, A., Knox, K. W., and Work, E., Chemical and biological properties of an extracellular lipopolysaccharide from Escherichia coli grown under lysine-limiting conditions. Biochem. J., 99, 53–61 (1966).
  • 63) Kasai, N., Chemical studies on the lipid component of endotoxin, with special emphasis on its relation to biological activities. Ann. N. Y. Acad. Sci., 133, 486–507 (1966).
  • 64) Smit, J., Kamio, Y., and Nikaido, H., Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J. Bacteriol., 124, 942–958 (1975).
  • 65) Lai, J.-S., Okuda, S., and Takahashi, H., β-Acyloxy fatty acids as components of lipid A from Selenomonas ruminantium. Agric. Biol. Chem., 42, 1441–1442 (1978).
  • 66) Nikaido, H., and Vaara, M., Molecular basis of bacterial outer membrane permeability. Microbiol. Rev., 49, 1–32 (1985).
  • 67) Benz, R., Structure and function of porins from Gram-negative bacteria. Ann. Rev. Microbiol., 42, 359–393 (1988).
  • 68) Nikaido, H., Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem., 269, 3905–3908 (1994).
  • 69) Rosenbusch, J. P., Characterization of the major envelope protein from Escherichia coli. Reguar arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J. Biol. Chem., 249, 8019–8029 (1974).
  • 70) Kalmokoff, M. L., Austin, J. W., Whitford, M. F., and Teather, R. M., Characterization of a major envelope protein from the rumen anaerobe Selenomonas ruminantium OB268. Can. J. Microbiol., 46, 295–303 (2000).
  • 71) Sára, M., and Sleytr, U. B., S-layer proteins. J. Bacteriol., 182, 859–868 (2000).
  • 72) Lupas, A., Engelhardt, H., Peters, J., Santarius, U., Volker, S., and Baumeister, W., Domain structure of the Acetogenium kivui surface layer revealed by electroon crystallography and sequence analysis. J. Bacteriol., 176, 1224–1233 (1994).
  • 73) Chauvaux, S., Matuschek, M., and Beguin, P., Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes. J. Bacteriol., 181, 2455–2458 (1999).
  • 74) Engel, A. F., Cejka, Z., Lupas, A., Lottspeich, F., and Baumeister, W., Isolation and cloning of OMP-o, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. EMBO J., 11, 4369–4378 (1992).
  • 75) Olabarria, G., Carrascosa, J. L., De Pedro, M. A., and Berenguer, J., A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J. Bacteriol., 178, 4765–4772 (1996).
  • 76) Inouye, M., Show, J., and Shen, C., The assembly of a structural lipoprotein in the envelope of Escherichia coli. J. Biol. Chem., 247, 8154–8159 (1972).
  • 77) Kikuchi, S., Shibuya, I., and Matsumoto, K., Viability of an Escherichia coli pgsA null mutant lacking detectable phosphatidylglycerol and cardiolipin. J. Bacteriol., 182, 371–376 (2000).
  • 78) Matsumoto, K., Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids (Micro Review). Mol. Microbiol., 39, 1427–1433 (2001).
  • 79) Suzuki, M., Hara, H., and Matsumoto, K., Envelope disorder of Escherichia coli cells lacking phosphatidylglycerol. J. Bacteriol., 184, 5418–5425 (2002).
  • 80) Hirota, Y., Suzuki, H., Nishimura, Y., and Yasuda, S., On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. Proc. Natl. Acad. Sci. U.S.A., 74, 1417–1420 (1977).
  • 81) Suzuki, H., Nishimura, Y., Yasuda, S., Nishimura, A., Yamada, M., and Hirota, Y., Murein-lipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. Mol. Gen. Genet., 167, 1–9 (1978).
  • 82) Yem, D. W., and Wu, H. C., Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. J. Bacteriol., 133, 1419–1426 (1978).
  • 83) Tamaki, S., and Matsuhashi, M., Increase in sensitivity to antibiotics and lysozyme on deletion of lipopolysaccharides in Escherichia coli strains. J. Bacteriol., 114, 453–454 (1973).
  • 84) Kamio, Y., and Nikaido, H., Outer membrane of Salmonella typhimurium; accessibility of phospholipid head groups to phospholipase C and CNBr-activated dextran in the external medium. Biochemistry, 15, 2561–2570 (1976).
  • 85) Ghuysen, J.-M., and Shockman, G. D., Biosynthesis of peptidoglycan. In “Bacterial Membranes and Walls”, ed. Leive, L., Marcel Dekker, New York, pp. 37–130 (1973).
  • 86) Canellakis, E. S., Viceps-Madore, D., Kyriakidis, D. A., and Heller, J. S., The regulation and function of ornithine decarboxylase and of the polyamines. Curr. Top. Cell. Regul., 15, 155–202 (1979).
  • 87) Tabor, C. W., and Tabor, H., Polyamines. Annu. Rev. Biochem., 53, 749–790 (1984).
  • 88) Tabor, C. W., and Tabor, H., Polyamines in microorganisms. Microbiol. Rev., 49, 81–99 (1985).
  • 89) Pegg, A. E., Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res., 48, 759–774 (1988).
  • 90) Cohen, S. S., “A Guide to the Polyamines”, Oxford University Press, Oxford, pp. 1–595 (1997).
  • 91) Ritchey, M. B., and Delwiche, E. A., Characterization of a naturally occurring diamine auxotroph of Veillonella alcalescens. J. Bacteriol., 124, 1213–1219 (1975).
  • 92) Kamio, Y., and Nakamura, K., Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J. Bacteriol., 169, 2881–2884 (1987).
  • 93) Hirao, T., Sato, M., Shirahata, A., and Kamio, Y., Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica. J. Bacteriol., 182, 1154–1157 (2000).
  • 94) Hamana, K., Distribution of cell wall-linked polyamines within the Gram-negative anaerobes of the subbranch Sporomusa belonging phylogenetically to Gram-positive taxa. Microbios, 100, 145–157 (1999).
  • 95) Hamana, K., Saito, T., Okada, M., Sakamoto, A., and Hosoya, R., Covalently linked polyamines in the cell wall peptidoglycan of Selenomonas, Anaeromusa, Dendrosporobacter, Acidaminococcus and Anaerovibrio belonging to the Sporomusa subbranch. J. Gen. Appl. Microbiol., 48, 177–180 (2002).
  • 96) Pfanzagl, B., Zenker, A., Pitienauer, E., Allmaier, G., Martinez-Torrecuadrada, J., Schmid, E. R., de Pedro, M. A., and Löffelhardt, W., Primary structure of cyanella peptidoglycan of Cyanophora paradoxa: a prokaryotic cell wall as part of an organella envelope. J. Bacteriol., 178, 332–339 (1996).
  • 97) Pfanzagl, B., Allmaier, G., Schmid, E. R., de Pedro, M. A., and Löffelhardt, W., N-Acetylputrescine as a characteristic constituent of cyanella peptidoglycan in glaucocystophyte algae. J. Bacteriol., 178, 6994–6997 (1996).
  • 98) Matsuhashi, M., Dietrich, C. P., and Strominger, J. L., Biosynthesis of the peptidoglycan of bacterial cell walls. III. The role of soluble ribonucleic acid and of lipid intermediates in glycine incorporation in Staphylococcus aureus. J. Biol. Chem., 242, 3191–3206 (1967).
  • 99) Higashi, Y., Strominger, J. L., and Sweelly, C. C., Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc. Natl. Acad. Sci. U. S. A., 57, 1878–1884 (1967).
  • 100) Kamiryo, T., and Matsuhashi, M., The biosynthesis of the cross-linking peptides in the cell wall peptidoglycan of Staphylococcus aureus. J. Biol. Chem., 247, 6306–6311 (1972).
  • 101) Katz, W., Matsuhashi, M., Dietrich, C. P., and Strominger, J. L., Biosynthesis of the peptidoglycan of bacterial cell walls. IV. Incorporation of glycine in Micrococcus lysodeikticus J. Biol. Chem., 242, 3207–3217 (1967).
  • 102) Siewert, G., and Strominger, J. L., Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus. J. Biol. Chem., 243, 783–790 (1968).
  • 103) Rohrer, S., Ehlert, K., Tschierske, M., Labischinski, H., and Berger-Bachi, B., The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. U. S. A., 96, 9351–9356 (1999).
  • 104) Bouhss, A., Josseaume, N., Allanic, D., Crouvoisier, M., Gutmann, L., Mainardi, J. L., Mengin-Lecreulx, D., van Heijenoort, J., and Arthur, M., Identification of the UDP-MurNA c-pentapeptide: L-alanine ligase for synthesis of branched peptidoglycan precursors in Enterococcus faecalis. J. Bacteriol., 183, 5122–5127 (2001).
  • 105) Ficker, E., Taglialatela, M., Wible, B. A., Henley, C. M., and Brown, A. M., Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science, 266, 1068–1072 (1994).
  • 106) Lopatin, A., Makhina, E. N., and Nichols, C. G., Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature, 372, 366–369 (1994).
  • 107) Johnson, T. D., Modulation of channel function by polyamines. Trends Pharmacol. Sci., 17, 22–27 (1996).
  • 108) dela Vega, A. L., and Delcour, A. H., Polyamines decrease Escherichia coli outer membrane permeability. J. Bacteriol., 178, 3715–3721 (1996).
  • 109) Delcour, A. H., Function and modulation of bacterial porins: insights from electrophysiology. FEMS Microbiol. Lett., 151, 115–123 (1997).
  • 110) Samartzidou, H., and Delcour, A. H., Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J. Bacteriol., 181, 791–798 (1999).
  • 111) Pösö, H., McCann, P. P., Tanskanen, R., Bey, P., and Sjoerdsma, A., Inhibition of growth of Mycoplasma dispar by DL-α-difluoromethyllysine, a selective irreversible inhibitor of lysine decarboxylase, and reversal by cadaverine (1,5-diaminopentane). Biochem. Biophys. Res. Commun., 125, 205–210 (1984).
  • 112) Yamada, H., and Mizushima, S., Lipoprotein-bearing peptidoglycan sacculus as a preferred site for the in vitro assembly of membrane from dissociated components of outer membrane of Escherichia coli K-12. J. Biochem. (Tokyo), 81, 1889–1899 (1977).
  • 113) Sturgis, J. N., Organization and evolution of the tol-pal gene cluster. J. Mol. Microbiol. Biotechnol., 3, 113–122 (2001).
  • 114) Lloubes, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A., and Journet, L., The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? (Mini-review). Res. Microbiol., 152, 523–529 (2001).
  • 115) Cascales, E., Bernadac, A., Gavioli, M., Lazzaroni, J.-C., and Lloubes, R., Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol., 184, 754–759 (2002).
  • 116) Lazzaroni, J.-C., Dubuisson, J.-F., and Vianney, A., The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochimie, 84, 391–397 (2002).
  • 117) Bernadac, A., Gavioli, M., Lazzaroni, J.-C., Raina, S., and Lloubes, R., Escherichia coli tol-pal mutants from outer membrane vesicles. J. Bacteriol., 180, 4872–4878 (1998).
  • 118) Boeker, E. A., and Snell, E. E., Amino acid decarboxylase. The Enzymes, 6, 217–253 (1972).
  • 119) Sabo, D. L., Boeker, E. A., Byers, B., Waron, H., and Fisher, E. H., Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry, 13, 662–670 (1974).
  • 120) Soda, K., and Moriguchi, M., Crystalline lysine decarboxylase. Biochem. Biophys. Res. Commun., 34, 34–39 (1969).
  • 121) Kikuchi, Y., Kojima, H., Tanaka, T., Takatsuka, Y., and Kamio, Y., Characterization of a second lysine decarboxylase isolated from Escherichia coli. J. Bacteriol., 179, 4486–4492 (1997).
  • 122) Momany, C., Ernst, S., Ghosh, R., Chang, N. L., and Hackert, M. L.,Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 Å resolution. J. Mol. Biol., 252, 643–655 (1995).
  • 123) Tabor, C. W., and Tabor, H., Ornithine decarboxylase in microorganisms. In “Ornithine Decarboxylase: Biology, Enzymology, and Molecular Genetics”, ed. Hayashi, S., Pergamon Press Inc., New York, pp. 97–106 (1989).
  • 124) Kern, A. D., Oliveira, M. A., Coffino, P., and Hackert, M. L., Structure of mammalian ornithine decarboxylase at 1.6 Å resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure. Fold. Des., 7, 567–581 (1999).
  • 125) Tobias, K. E., Mamroud-Kidron, E., and Kahana, C., Gly387 of murine ornithine decarboxylase is essential for the formation of stable homodimers. Eur. J. Biochem., 218, 245–250 (1993).
  • 126) Rosenberg-Hasson, Y., Strumpf, D., and Kahana, C., Mouse ornithine decarboxylase is phosphorylated by casein kinase-II at a predominant single location (serine 303). Eur. J. Biochem., 197, 419–424 (1991).
  • 127) Grishin, N. V., Phillips, M. A., and Goldsmith, E. J., Modeling of the spatial structure of eukaryotic ornithine decarboxylase. Protein Sci., 4, 1291–1304 (1995).
  • 128) Deckert, G., Warren, P. V., Gaasterland, T., Young, W. G., Lenox, A. L., Graham, D. E., Overbeek, R., Snead, M. A., Keller, M., Aujay, M., Huber, R., Feldman, R. A., Short, J. M., Olson, G. J., and Swanson, R. V., The complete genome of the hyperthermophilic bacterium. Aquifex aeolicus. Nature, 392, 353–358 (1998).
  • 129) Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C., Ketchum, K. A., McDonald, L., Utterback, T. R., Malek, J. A., Linher, K. D., Garrett, M. M., Stewart, A. M., Cotton, M. D., Pratt, M. S., Phillips, C. A., Richardson, D., Heidelberg, J., Sutton, G. G., Fleischmann, R. D., White, O., Salzberg, S. L., Smith, H. O., Venter, J. C., and Fraser, C. M., Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima.Nature, 399, 323–329 (1999).
  • 130) Olsen, G. J., Woese, C. R., and Overbeek, R., The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol., 176, 1–6 (1994).
  • 131) Grishin, N. V., Osterman, A. L., Brooks, H. B., Phillips, M. A., and Goldsmith, E. J., X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with a-difluoromethylornithine. Biochemistry, 38, 15174–15184 (1999).
  • 132) Yano, T., Oue, S., and Kagamiyama, H., Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. U. S. A., 95, 5511–5515 (1998).
  • 133) Hayashi, S., Murakami, Y., and Matsufuji, S., Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem. Sci., 21, 27–30 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.