550
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Characterization of the Cytoplasmic Interacting Protein of the Receptor Kinase IRK Expressed in the Inflorescence and Root Apices of Arabidopsis

, , , &
Pages 2598-2606 | Received 24 Aug 2004, Accepted 24 Sep 2004, Published online: 22 May 2014

  • 1) Clark, S. E., Williams, R. W., and Meyerowitz, E. M., The CLAVATA1gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89, 575–585 (1997).
  • 2) van-den-Berg, C., Weisbeek, P., and Scheres, B., Cell fate and cell differentiation status in the Arabidopsis root. Planta, 205, 483–491 (1998).
  • 3) Meyerowitz, E. M., Genetic control of cell division patterns in developing plants. Cell, 88, 299–308 (1997).
  • 4) Torii, K. U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R. F., and Komeda, Y., The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 8, 735–746 (1996).
  • 5) Takayama, S., Shimosato, H., Shiba, H., Funato, M., Che, F.-S., Watanabe, M., Iwano, M., and Isogai, A., Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature, 413, 534–538 (2001).
  • 6) Yokoyama, R., Takahashi, T., Kato, A., Torii, K. U., and Komeda, Y., The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ primordia. Plant J., 15, 301–310 (1998).
  • 7) Komeda, Y., Takahashi, T., and Hanzawa, Y., Development of inflorescences in Arabidopsis thaliana. J. Plant Res., 111, 283–288 (1998).
  • 8) Liu, G. Z., Pi, L. Y., Walker, J. C., Ronald, P. C., and Song, W. Y., Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J. Biol. Chem., 277, 20264–20269 (2002).
  • 9) Li, J., and Chory, J., A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90, 929–938 (1997).
  • 10) Matsubayashi, Y., Ogawa, M., Morita, A., and Sakagami, Y., An LRR receptor kinase involved in perception of a peptide plant hormone, Phytosulfokine. Science, 296, 1470–1472 (2002).
  • 11) Madsen, E. B., Madsen, L. H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., and Stougaard, J., A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 425, 637–640 (2003).
  • 12) Shiu, S.-H., and Bleecker, A. B., Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A., 98, 10763–10768 (2001).
  • 13) Nam, K. H., and Li, J., BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110, 203–212 (2002).
  • 14) Yin, Y., Wang, Z. Y., Mora Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J., BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181–191 (2002).
  • 15) Trotochaud, A. E., Hao, T., Wu, G., Yang, Z., and Clark, S. E., The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell, 11, 393–406 (1999).
  • 16) Ishiguro, S., Watanabe, Y., Ito, N., Nonaka, H., Takeda, N., Sakai, T., Kanaya, H., and Okada, K., SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J., 21, 898–908 (2002).
  • 17) Schoof, H., Lenhard, M., Haecker, A., Mayer, K. F. X., Jürgens, G., and Laux, T., The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100, 635–644 (2000).
  • 18) Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E., and Walker, J. C., BAK1, An Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110, 213–222 (2002).
  • 19) Zhao, J., Peng, P., Schmitz, R. J., Decker, A. D., Tax, F. E., and Li, J., Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol., 130, 1221–1229 (2002).
  • 20) Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J., Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513 (2002).
  • 21) Fujita, H., Takemura, M., Tani, E., Nemoto, K., Yokota, A., and Kohchi, T., An Arabidopsis MADS-box protein, AGL24, is specifically bound to and phosphorylated by Meristematic Receptor-Like Kinase (MRLK). Plant Cell Physiol., 44, 735–742 (2003).
  • 22) Takemura, M., Fujishige, K., Hyodo, H., Ohashi, Y., Kami, C., Nishii, A., Ohyama, K., and Kohchi, T., Systematic isolation of genes expressed at low levels in inflorescence apices of Arabidopsis thaliana. DNA Res., 6, 275–282 (1999).
  • 23) Kanamoto, H., Hattan, J., Takemura, M., Yokota, A., and Kohchi, T., Molecular cloning and characterization of a gene coding for a putative receptor-like protein kinase with a Leucine-rich repeat expressed in inflorescence and root apices from Arabidopsis. Plant Biotech., 19, 113–120 (2002).
  • 24) Menges, M., and Murray, J. A. H., Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J., 30, 203–212 (2002).
  • 25) Bechtold, N., and Pelletier, G., In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol., 82, 259–266 (1998).
  • 26) Topping, J. F., Wei, W., and Lindsey, K., Functional tagging of regulatory elements in the plant genome. Development, 112, 1009–1019 (1991).
  • 27) Chiu, W.-L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J., Engineered GFP as a vital reporter in plants. Curr. Biol., 6, 325–330 (1996).
  • 28) Burssens, S., de Almeida Engler, J., Beeckman, T., Richard, C., Shaul, O., Ferreira, P., Montagu, M. V., and Inzé, D., Developmental expression of the Arabidopsis thaliana CycA2;1 gene. Planta, 211, 623–631 (2000).
  • 29) Umeda, M., Umeda-Hara, C., Yamaguchi, M., Hashimoto, J., and Uchimiya, H., Differential expression of genes for cyclin-dependent protein kinases in rice plants. Plant Physiol., 119, 31–40 (1999).
  • 30) Hu, Y., Xiea, Q., and Chua, N.-H., The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell, 15, 1951–1961 (2003).
  • 31) Gray, W. M., del Pozo, J. C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W. L., Yang, M., Ma, H., and Estelle, M., Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev., 13, 1678–1691 (1999).
  • 32) Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., and Palme, K., AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 108, 661–673 (2002).
  • 33) Ruegger, M., Dewey, E., Gray, W. M., Hobbie, L., Turner, J., and Estelle, M., The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev., 12, 198–207 (1998).
  • 34) Laskowski, M. J., Williams, M. E., Nusbaum, H. C., and Sussex, I. M., Formation of lateral root meristems is a two-stage process. Development, 121, 3303–3310 (1995).
  • 35) Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G., and Estelle, M., Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell, 9, 745–757 (1997).
  • 36) Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., Irie, K., Ito, M., Terada, M., Banno, H., Yamazaki, Y., and Machida, Y., Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell, 109, 87–99 (2002).
  • 37) Fukaki, H., Tameda, S., Masuda, H., and Tasaka, M., Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J., 29, 153–168 (2002).
  • 38) Dievart, A., Dalal, M., Tax, F. E., Lacey, A. D., Huttly, A., Li, J., and Clark, S. E., CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell, 15, 1198–1211 (2003).
  • 39) Shpak, E. D., Lakeman, M. B., and Torii, K. U., Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell, 15, 1095–1110 (2003).
  • 40) Miller, J. H., Assay of β-galactosidase. In “Experiments in Molecular Genetics”, Cold Spring Harbor Laboratory Press, New York, pp. 352–355 (1972).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.