388
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Excess Nicotinamide Administration on the Urinary Excretion of Nicotinamide N-Oxide and Nicotinuric Acid by Rats

, , &
Pages 44-50 | Received 12 May 2003, Accepted 29 Aug 2003, Published online: 22 May 2014

  • 1) Knip, M., Douek, I. F., Moore, W. P., Gillmor, H. A., Bingley, P. J., and Gale, E. A., Safety of high-dose nicotinamide: a review. Diabetologia, 43, 1337–1345 (2000).
  • 2) Shibata, K., Shimada, H., and Taguchi, H., Fate of nicotinamide differs due to an intake of nicotinamide. Biosci. Biotechnol. Biochem., 60, 1204–1206 (1996).
  • 3) Winter, S. L., and Boyer, J. L., Hepatic toxicity from large doses of vitamin B3 (nicotinamide). N. Engl. J. Med., 289, 1180–1182 (1973).
  • 4) Ministry of Health, Labour and Welfare, Introduction. In “Recommended Dietary Allowances for the Japanese, 6th Revision”, Study group of health and nutrition information, Dai-ichi Shuppan Publishing, Tokyo, pp. 21–30 (1999).
  • 5) Shibata, K., Fate of nicotinamide and nicotinic acid differs in rats. J. Nutr., 119, 892–895 (1989).
  • 6) Howwitt, M. K., Harvey, C. C., Rothwell, W. S., Cutler, J. L., and Haffron, D., Tryptophan–niacin relationships in man. Studies with diets deficient in riboflavin and niacin, together with observations on the excretion of nitrogen and niacin metabolism. J. Nutr., 60 (Suppl. 1), 1–43 (1956).
  • 7) Wertz, A. W., Lojkin, M. E., Bouchard, B. S., and Derby, M. B., Tryptophan-niacin relationship in pregnancy. J. Nutr., 64, 339–353 (1958).
  • 8) Shibata, K., and Matsuo, H., Effect of dietary tryptophan levels on the urinary excretion of nicotinamide and its metabolites in rats fed a niacin-free diet or a constant total protein level. J. Nutr., 120, 1191–1197 (1990).
  • 9) Shibata, K., and Onodera, M., Comparison of tryptophan–niacin conversion in rats fed with a nicotinic acid-free diet containing egg white, proteolysate, or mixtures of amino acids. Agric. Biol. Chem., 55, 1291–1298 (1991).
  • 10) Shibata, K., Effects of adding the limiting amino acids to an amino acid diet simulating rice protein on the conversion of tryptophan to nicotinamide in rats. Biosci. Biotechnol. Biochem., 58, 442–443 (1994).
  • 11) Shibata, K., Taniguchi, I., and Onodera, M., Effect of adding branched-chain amino acids to a nicotinic acid-free, low-protein diet on the conversion ratio of tryptophan to nicotinamide in rats. Biosci. Biotechnol. Biochem., 58, 970–971 (1994).
  • 12) Shibata, K., Conversion ratio of tryptophan to niacin in rats fed with a nicotinic acid-free, tryptophan-limiting diet. Biosci. Biotechnol. Biochem., 59, 715–716 (1995).
  • 13) Sanada, H., Suppressive effect of dietary unsaturated fatty acids on α-amino-β-muconate-ε-semialdehyde decarboxylase, a key enzyme of tryptophan–niacin metabolism in rat liver. J. Nutr. Sci. Vitaminol., 31, 327–337 (1985).
  • 14) Shibata, K., and Onodera, M., Changes in the conversion rate of tryptophan-nicotinamide according to dietary fat and protein levels. Biosci. Biotechnol. Biochem., 56, 1104–1108 (1992).
  • 15) Egashira, Y., Yamajima, Y., and Sanada, H., Effects of various dietary fatty acids on α-amino-β-muconate-ε-semialdehyde decarboxylase activity in rat liver. Biosci. Biotechnol. Biochem., 56, 2015–2019 (1992).
  • 16) Shibata, K., and Kondo, T., Effects of progesterone and estrone on the conversion of tryptophan to nicotinamide in rats. Biosci. Biotechnol. Biochem., 57, 1890–1893 (1993).
  • 17) Shibata, K., and Toda, S., Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats. Biosci. Biotechnol. Biochem., 61, 1200–1202 (1997).
  • 18) Shibata, K., and Toda, S., Effects of thyroxin on the conversion ratio of tryptophan to nicotinamide in rats. Biosci. Biotechnol. Biochem., 58, 1757–1762 (1994).
  • 19) Shibata, K., Effects of adrenalin on the conversion ratio of tryptophan to niacin in rats. Biosci. Biotechnol. Biochem., 59, 2127–2129 (1995).
  • 20) Shibata, K., Effects of prednidolone on the urinary excretion of nicotinamide and its metabolites in rats fed with a niacin-free diet. Agric. Biol. Chem., 54, 1195–1200 (1990).
  • 21) Shibata, K., Fukuwatari, T., Enomoto, A., and Sugimoto, E., Increased conversion ratio of tryptophan to niacin by dietary di-n-butylphthalate. J. Nutr. Sci. Vitaminol., 47, 263–266 (2001).
  • 22) Fukuwatari, T., Suzuki, Y., Sugimoto, E., and Shibata, K., Elucidation of toxic mechanism of the plasticizers, phthalic acid esters, a putative endocrine disrupter: effects of dietary di(2-ethylhexyl)phthalate on the metabolism of tryptophan to niacin in rats. Biosci. Biotechnol. Biochem., 66, 705–710 (2002).
  • 23) Fukuwatari, T., Suzuki, Y., Sugimoto, E., and Shibata, K., Identification of a toxic mechanism of the plasticizers, phthalic acid esters, which are putative endocrine disrupters: time-dependent increase in quinolinic acid and its metabolites in rats fed di(2-ethylhexyl)phthalate. Biosci. Biotechnol. Biochem., 66, 2687–2691 (2002).
  • 24) Shibata, K., Kondo, T., Marugami, M., and Umezawa, C., Increased conversion ratio of tryptophan to niacin by the administration of clofibrate, a hypolipidemic drug, to rats. Biosci. Biotechnol. Biochem., 60, 1455–1459 (1996).
  • 25) Shibata, K., Fukuwatari, T., and Sugimoto, E., Effects of dietary pyrazinamide, an antituberculosis agent, on the metabolism of tryptophan to niacin and of tryptophan to serotonin in rats. Biosci. Biotechnol. Biochem., 65, 1339–1346 (2001).
  • 26) Fukuwatari, T., Sugimoto, E., and Shibata, K., Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity. Biosci. Biotechnol. Biochem., 66, 1435–1441 (2002).
  • 27) Sanada, H., Miyazaki, M., and Takahashi, T., Regulation of tryptophan-niacin metabolism in diabetic rats. J. Nutr. Sci. Vitaminol., 26, 449–459 (1980).
  • 28) Fukuwatari, T., Morikawa, Y., Hayakawa, F., Sugimoto, E., and Shibata, K., Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. Biosci. Biotechnol. Biochem., 65, 2154–2161 (2001).
  • 29) Fukuwatari, T., Morikawa, Y., Sugimoto, E., and Shibata, K., Effects of fatty liver induced by a niacin-free diet with orotic acid on the metabolism of tryptophan to niacin in rats. Biosci. Biotechnol. Biochem., 66, 1196–1204 (2002).
  • 30) Pullman, M. P., and Colowick, S. P., Preparation of 2- and 6-pyridones of N 1-methylnicotinamide. J. Biol. Chem., 206, 121–127 (1954).
  • 31) Shibata, K., Kawada, T., and Iwai, K., Simultaneous micro-determination of nicotinamide and its major metabolites, N 1-methyl-2-pyridone-5-carboxamide and N 1-methyl-4-pyridone-3-carboxamide, by high-performance liquid chromatography. J. Chromatogr., 424, 23–28 (1988).
  • 32) Shibata, K., and Murata, K., Blood NAD as an index of niacin nutrition. Nutr. Int., 2, 177–181 (1986).
  • 33) Shibata, K., and Tanaka, K., Simple measurement of blood NADP and blood levels of NAD and NADP in humans. Agric. Biol. Chem., 50, 2941–2942 (1986).
  • 34) Shibata, K., Ultramicro-determination of N 1-methylnicotinamide in urine by high-performance liquid chromatography. Vitamins (Japan), 61, 599–604 (1987).
  • 35) Shibata, K., Simultaneous measurement of nicotinic acid and its major metabolite, nicotinuric acid, in blood and urine by reversed-phase high-performance liquid chromatography. Agric. Biol. Chem., 52, 2973–2976 (1988).
  • 36) Shibata, K., High-performance liquid chromatographic measurement of nicotinamide N-oxide in urine after extracting with chloroform. Agric. Biol. Chem., 53, 1329–1331 (1989).
  • 37) Shibata, K., Fluorimetric micro-determination of kynurenic acid, an endogenous blocker of neurotoxicity, by high-performance liquid chromatography. J. Chromatogr., 430, 376–380 (1988).
  • 38) Shibata, K., and Onodera, M., Simultaneous high-performance liquid chromatographic measurement of xanthurenic acid and 3-hydroxyanthranilic acid in urine. Biosci. Biotechnol. Biochem., 56, 974 (1992).
  • 39) Shibata, K., and Onodera, M., Measurement of 3-hydroxyanthranilic acid and anthranilic acid in urine by high-performance liquid chromatography. Agric. Biol. Chem., 55, 143–148 (1991).
  • 40) Mawatari, K., Oshida, K., Iinuma, F., and Watanabe, M., Determination of quinolinic acid in human urine by liquid chromatography with fluorimetric detection. Anal. Chim. Acta, 302, 179–183 (1995).
  • 41) Jones, K. M., The mechanism of nicotinuric acid synthesis. Biochem. J., 73, 714–719 (1959).
  • 42) Murray, K. N., and Chaykin, S., The enzymatic reduction of nicotinamide N-oxide. J. Biol. Chem., 241, 2029–2034 (1966).
  • 43) Shibata, K., and Matsuo, H., Course of the urinary excretion of nicotinic acid and its related compounds following the injection of optimal amount of nicotinic acid for NAD synthesis. Agric. Biol. Chem., 53, 865–866 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.