677
Views
83
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Phylogenetic Diversity of the Bacterial Community in the Gut of the Termite Coptotermes formosanus

, , &
Pages 1145-1155 | Received 24 Jan 2005, Accepted 17 Mar 2005, Published online: 22 May 2014

  • 1) Breznak, J. A., and Brune, A., Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol., 39, 453–487 (1994).
  • 2) Anklin-Muhlemann, R., Bignell, D. E., Veivers, P. C., Leuthold, R. H., and Slaytor, M., Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J. Insect Physiol., 41, 929–940 (1995).
  • 3) Bignell, D. E., Oskarsson, H., and Anderson, J. M., Distribution and abundance of bacteria in the gut of a soil-feeding termite Procutiermes aburiensis (Termitidae, Termitinae). J. Gen. Microbiol., 117, 393–403 (1980).
  • 4) Schultz, J. E., and Breznak, J. A., Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl. Environ. Microbiol., 35, 930–936 (1978).
  • 5) Ohkuma, M., and Kudo, T., Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl. Environ. Microbiol., 62, 461–468 (1996).
  • 6) Schmitt-Wagner, D., Friedrich, M. W., Wagner, B., and Brune, A., Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol., 69, 6018–6024 (2003).
  • 7) Berchtold, M., Chatzinotas, A., Schonhuber, W., Brune, A., Amann, R., Hahn, D., and Konig, H., Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch. Microbiol., 172, 407–416 (1999).
  • 8) Hongoh, Y., Ohkuma, M., and Kudo, T., Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microb. Ecol., 44, 231–242 (2003).
  • 9) Vargo, E. L., Husseneder, C., and Grace, J. K., Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol. Ecol., 12, 2599–2608 (2003).
  • 10) Minton, N. A., and Murray, V. S., A review of organophosphate poisoning. Med. Toxicol. Adverse Drug Exp., 3, 350–375 (1988).
  • 11) Davies, J. E., Neurotoxic concerns of human pesticide exposures. Am. J. Ind. Med., 18, 327–331 (1990).
  • 12) Magnuson, V. L., Ally, D. S., Nylund, S. J., Karanjawala, Z. E., Rayman, J. B., Knapp, J. I., Lowe, A. L., Ghosh, S., and Collins, F. S., Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. Biotechniques, 21, 700–709 (1996).
  • 13) Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr., Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M., and Tiedje, J. M., The RDP-II (Ribosomal Database Project). Nucl. Acids Res., 29, 173–174 (2001).
  • 14) Robison-Cox, J. F., Bateson, M. M., and Ward, D. M., Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences. Appl. Environ. Microbiol., 61, 1240–1245 (1995).
  • 15) Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res., 25, 4876–4882 (1997).
  • 16) Gilbert, D. G., SeqPup biological sequence editor and analysis program, version 0.6, Biology Department, Indiana University, Bloomington (1996).
  • 17) Saitou, N., and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425 (1987).
  • 18) Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J., Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63, 4516–4522 (1997).
  • 19) Amann, R. I., Ludwig, W., and Schleifer, K. H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143–169 (1995).
  • 20) Muyzer, G., Teske, A., Wirsen, C. O., and Jannasch, H. W., Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol., 164, 165–172 (1995).
  • 21) Stackebrandt, E., Liesack, W., and Goebel, B. M., Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J., 7, 232–236 (1993).
  • 22) Suzuki, M. T., and Giovannoni, S. J., Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol., 62, 625–630 (1996).
  • 23) Wilson, K. H., and Blitchington, R. B., Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol., 62, 2273–2278 (1996).
  • 24) Brauman, A., Dore, J., Eggleton, P., Bignell, D., Breznak, J. A., and Kane, M. D., Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol., 35, 27–36 (2001).
  • 25) Egert, M., and Friedrich, M. W., Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl. Environ. Microbiol., 69, 2555–2562 (2003).
  • 26) Ohkuma, M., Noda, S., Hongoh, Y., and Kudo, T., Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci. Biotechnol. Biochem., 66, 78–84 (2002).
  • 27) Potrikus, C. J., and Breznak, J. A., Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. Natl. Acad. Sci. U.S.A., 78, 4601–4605 (1981).
  • 28) Odelson, D. A., and Breznak, J. A., Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl. Environ. Microbiol., 49, 614–621 (1985).
  • 29) Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J. A., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol., 44, 812–826 (1994).
  • 30) Hengstmann, U., Chin, K. J., Janssen, P. H., and Liesack, W., Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol., 65, 5050–5058 (1999).
  • 31) Munson, M. A., Pitt-Ford, T., Chong, B., Weightman, A., and Wade, W. G., Molecular and cultural analysis of the microflora associated with endodontic infections. J. Dent. Res., 81, 761–766 (2002).
  • 32) Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Namakura, M., Aminov, R. I., and Benno, Y., Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 6, 273–284 (2000).
  • 33) Leser, T. D., Amenuvor, J. Z., Jensen, T. K., Lindecrona, R.H., Boye, M., and Moller, K., Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol., 68, 673–690 (2002).
  • 34) Egert, M., Wagner, B., Lemke, T., Brune, A., and Friedrich, M. W., Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol., 69, 6659–6668 (2003).
  • 35) Hethener, P., Brauman, A., and Garcia, J.-L., Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. Syst. Appl. Microbiol., 15, 52–58 (1992).
  • 36) Weisburg, W. G., Tully, J. G., Rose, D. L., Petzel, J. P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T. G., Van Etten, J., Maniloff, J., and Woese, C. R., A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol., 171, 6455–6467 (1989).
  • 37) Fröhlich, J., and König, H., Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst. Appl. Microbiol., 22, 249–257 (1999).
  • 38) Lilburn, T. G., Schmidt, T. M., and Breznak, J. A., Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol., 1, 331–345 (1999).
  • 39) Eutick, M. L., Veivers, P., O’Brien, R. W., and Slaytor, M., Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. J. Insect Physiol., 24, 363–368 (1978).
  • 40) Leadbetter, J. R., Schmidt, T. M., Graber, J. R., and Breznak, J. A., Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science, 283, 686–689 (1999).
  • 41) Schmitt-Wagner, D., Friedrich, M. W., Wagner, B., and Brune, A., Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol., 69, 6007–6017 (2003).
  • 42) Stein, L. Y., La Duc, M. T., Grundl, T. J., and Nealson, K. H., Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ. Microbiol., 3, 10–18 (2001).
  • 43) Holmes, A. J., Bowyer, J., Holley, M. P., O’Donoghue, M., Montgomery, M., and Gillings, M. R., Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol., 33, 111–120 (2000).
  • 44) Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F., and Moletta, R., Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol., 63, 2802–2813 (1997).
  • 45) Delbes, C., Moletta, R., and Godon, J., Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol. Ecol., 35, 19–26 (2001).
  • 46) Li, L., Kato, C., and Horikoshi, K., Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar. Biotechnol. (NY), 1, 391–400 (1999).
  • 47) Alain, K., Olagnon, M., Desbruyeres, D., Page, A., Barbier, G., Juniper, S. K., Quellerou, J., and Cambon-Bonavita, M. A., Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol. Ecol., 42, 463–476 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.