322
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Stable Isotope Dilution-Based Accurate Comparative Quantification of Nitrogen-Containing Metabolites in Arabidopsis thaliana T87 Cells Using in Vivo15N-Isotope Enrichment

, , , &
Pages 1331-1340 | Received 28 Feb 2005, Accepted 30 Apr 2005, Published online: 22 May 2014

  • 1) Glassbrook, N., Beecher, C., and Ryals, J., Metabolic profiling on the right path. Nat. Biotechnol., 18, 1142–1143 (2000).
  • 2) Matuszewski, B. K., Constanzer, M. L., and Chavez-Eng, C. M., Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem., 70, 882–889 (1998).
  • 3) Bonfiglio, R., King, R. C., Olah, T. V., and Merkle, K., The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass Spectrom., 13, 1175–1185 (1999).
  • 4) Buhrman, D. L., Price, P. I., and Rudewicz, P. J., Quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry: a study of ion suppression. J. Am. Soc. Mass Spectrom., 7, 1099–1105 (1996).
  • 5) Fu, I., Woolf, E. J., and Matuszewski, B. K., Effect of the sample matrix on the determination of indinavir in human urine by HPLC with turbo ion spray tandem mass spectrometric detection. J. Pharm. Biomed. Anal., 18, 347–357 (1998).
  • 6) Matuszewski, B. K., Constanzer, M. L., and Chavez-Eng, C. M., Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem., 75, 3019–3030 (2003).
  • 7) Kim, J. K., Shiraishi, T., Fukusaki, E., and Kobayashi, A., Quantitation of formate by solid-phase microextraction and gas chromatography-mass spectrometry utilizing a [13C]formate internal standard. J. Chromatogr., 986, 313–317 (2003).
  • 8) Jacob, P., 3rd, Wilson, M., Yu, L., Mendelson, J., and Johnes, R. T., Determination of 4-hydroxy-3-methoxyphenylethylen glycol 4-sulfate in human urine liquid chromatography-tandem mass spectrometry. Anal. Chem., 74, 5290–5296 (2002).
  • 9) Kuklenyik, Z., Ashley, D. L., and Calafat, A. M., Quantitative detection of trichloroacetic acid in human urine using isotope dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Chem., 74, 2058–2063 (2002).
  • 10) Chiwocha, S. D. S., Abrams, S. R., Ambrose, S. J., Cutler, A. J., Loewen, M., Ross, A. R. S., and Kermode, A. R., A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J., 35, 405–417 (2003).
  • 11) Freitas, L. G., Götz, C. W., Ruff, M., Singer, H. P., and Muller, S. R., Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography-tandem mass spectrometry. J. Chromatogr., 1028, 277–286 (2004).
  • 12) Uphaus, R. A., Flaumenhaft, E., and Katz, J. J., A living organism of unusual isotopic composition: sequential and cumulative replacement of stable isotopes in Chlorella Vulgaris. Biochem. Biophys. Acta, 141, 625–632 (1967).
  • 13) Flaumenhaft, E., Uphaus, R. A., and Katz, J. J., Isotope biology of 13C extensive incorporation of highly enriched 13C in the Alga Chlorella vulgaris. Biochem. Biophys. Acta, 215, 421–429 (1970).
  • 14) Ippel, J. H., Pouvreau, L., Kroef, T., Gruppen, H., Versteeg, G., van den Putten, P., Struik, P. C., and van Mierlo, C. P. M., In vivo uniform 15N-isotope labelling of plants: using the greenhouse for structural proteomics. Proteomics, 4, 226–234 (2004).
  • 15) Grusak, M. A., and Pezeshgi, S., Uniformly 15N-labeled soybean seeds produced for use in human and animal nutrition studies: description of a recirculating hydroponic growth system and whole plant nutrient and environmental requirements. J. Sci. Food Agric., 64, 223–230 (1994).
  • 16) Kikuchi, J., Shinozaki, K., and Hirayama, T., Stable isotope labeling of Arabidopsis thaliana for NMR-Based metabolomics approach. Plant Cell Physiol., 45, 1099–1102 (2004).
  • 17) Axelos, M., Curie, C., Mazzolini, L., Bardet, C., and Lescure, B., A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol. Biochem., 30, 123–128 (1992).
  • 18) Nakamichi, N., Ito, S., Oyama, T., Yamashino, T., Kondo, T., and Mizuno, T., Characterization of plant circadian rhythms by employing Arabidopsis cells with bioluminescence reports. Plant Cell Physiol., 45, 57–67 (2004).
  • 19) Yuasa, T., Ichimura, K., Mizoguchi, T., and Shinozaki, K., Oxidative stress activates ATHPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol., 42, 1012–1016 (2001).
  • 20) Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J. R., and Shinozaki, K., ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol., 43, 1473–1483 (2002).
  • 21) Hanson, A. D., and Roje, S., One-carbon metabolism in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 119–137 (2001).
  • 22) Johnston, M., Jankowski, D., Marcotte, P., Tanaka, H., Esaki, N., Soda, K., and Walsh, C., Suicide inactivation of bacterial cystathionine gamma-synthase and methionine gamma-lyase during processing of L-propargylglycine. Biochemistry, 18, 4690–4701 (1979).
  • 23) Scott, J., Rebeille, F., and Fletcher, J., Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J. Sci. Food Agric., 80, 795–824 (2000).
  • 24) Konings, E. J. M., A validated liquid chromatographic method for determining folates in vegetables, milk powder, liver, and flour. J. AOAC Int., 82, 119–127 (1999).
  • 25) Callard, D., Axelos, M., and Mazzolini, L., Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol., 112, 705–715 (1996).
  • 26) An, C. I., Sawada, A., Fukusaki, E., and Kobayashi, A., A transient RNA interference assay system using Arabidopsis protoplasts. Biosci. Biotechnol. Biochem., 67, 2674–2677 (2003).
  • 27) Vahteristo, L., Lehikoinen, K., Ollilainen, V., and Varo, P., Application of an HPLC assay for the determination of folate derivatives in some vegetables, fruits and berries consumed in Finland. Food Chem., 59, 589–597 (1997).
  • 28) Freisleben, A., Schieberle, P., and Rychlik, M., Specific and sensitive quantification of folate vitamers in foods by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 376, 149–156 (2003).
  • 29) Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., and Willmitzer, L., Metabolite profiling for plant functional genomics. Nat. Biotechnol., 18, 1157–1161 (2000).
  • 30) Horne, D. W., and Holloway, R. S., Compartmentation of folate metabolism in rat pancreas: nitrous oxide inactivation of methionine synthase leads to accumulation of 5-methyltetrahydrofolate in cytosol. J. Nutr., 127, 1772–1775 (1997).
  • 31) Hervert, V., and Zalusky, R., Interrelations of vitamin B12 and folic acid metabolism: folic acid clearance studies. J. Clin. Invest., 41, 1263–1276 (1962).
  • 32) Kim, J., and Leustek, T., Repression of cystathionine r-synthase in Arabidopsis thaliana produces partial methionine auxotrophy and developmental abnormalities. Plant Sci., 151, 9–18 (2000).
  • 33) Roje, S., Wang, H., McNeil, S. D., Raymond, R. K., Appling, D. R., Shachar-hill, Y., Bohnert, H. J., and Hanson, A. D., Isolation, characterization, and functional expression of cDNAs encoding NADH-dependent methylenetetrahydrofolate reductase from higher plants. J. Biol. Chem., 274, 36089–36096 (1999).
  • 34) Giovanelli, J., Mudd, S. H., and Datko, A. H., Quantitative analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol., 78, 555–560 (1985).
  • 35) Zhao, J., Williams, C. C., and Last, R. L., Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell, 10, 359–370 (1998).
  • 36) Yao, K., De Luca, V., and Brisson, N., Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell, 7, 1787–1799 (1995).
  • 37) Bentley, R., The shikimate pathway-A metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol., 25, 307–384 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.