299
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Functions of Family-22 Carbohydrate-Binding Module in Clostridium thermocellum Xyn10C

, , , , &
Pages 160-165 | Received 01 Sep 2004, Accepted 20 Oct 2004, Published online: 22 May 2014

  • 1) Henrissat, B., and Bairoch, A., Updating the sequence-based classification of glycosyl hydrolases. Biochem. J., 316, 695–696 (1996).
  • 2) Boraston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J., Carbohydrate-binding modules: fine tuning polysaccharide recognition. Biochem. J., Immediate Publication, doi: 10.1042/BJ20040892.
  • 3) Sunna, A., Gibbs, M. D., and Bergquist, P. L., A novel thermostable multidomain 1,4-β-xylanase from ‘Caldibacillus cellulovorans’ and effect of its xylan-binding domain on enzyme activity. Microbiology, 146, 2947–2955 (2000).
  • 4) Feng, J.-X., Karita, S., Fujino, E., Fujino, T., Kimura, T., Sakka, K., and Ohmiya, K., Cloning, sequencing and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui and characterization of the translated product. Biosci. Biotechnol. Biochem., 64, 2614–2624 (2000).
  • 5) Ali, M. K., Fukumura, M., Sakano, K., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K., Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci. Biotechnol. Biochem., 63, 1596–1604 (1999).
  • 6) Fontes, C. M. G. A., Hazlewood, G. P., Morag, E., Hall, J., Hirst, B. H., and Gilbert, H. J., Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem. J., 307, 151–158 (1995).
  • 7) Devillard, E., Bera-Maillet, C., Flint, H. J., Scott, K. P., Newbold, C. J., Wallace, R. J., Jouany, J. P., and Forano, E., Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. Biochem. J., 373, 495–503 (2003).
  • 8) Winterhalter, C., Heinrich, P., Candussio, A., Wich, G., and Liebl, W., Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol. Microbiol., 15, 431–444 (1995).
  • 9) Lee, Y.-E., Lowe, S. L., Henrissat, B., and Zeikus, G., Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J. Bacteriol., 175, 5890–5898 (1993).
  • 10) Sunna, A., Gibbs, M. D., and Bergquist, P. L., The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem. J., 346, 583–586 (2000).
  • 11) Charnock, S. J., Bolam, D. N., Turkenburg, J. P., Gilbert, H. J., Ferreira, L. M., Davies, G. J., and Fontes, C. M. G. A., The X6 “thermostabilizing” domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry, 39, 5013–5021 (2000).
  • 12) Meissner, K., Wassenberg, D., and Liebl, W., The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage β-1,3/-1,4-glucan. Mol. Microbiol., 36, 898–912 (2000).
  • 13) Araki, R., Ali, M. K., Sakka, M., Kimura, T., Sakka, K., and Ohmiya, K., Essential role of the family-22 carbohydrate-binding modules for β-1,3-1,4-glucanase activity of Clostridium stercorarium Xyn10B. FEBS Lett., 561, 155–158 (2004).
  • 14) Hayashi, H., Takagi, K., Fukumura, M., Kimura, T., Karita, S., Sakka, K., and Ohmiya, K., Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J. Bacteriol., 179, 4246–4253 (1997).
  • 15) Ali, M. K., Hayashi, H., Karita, S., Goto, M., Kimura, T., Sakka, K., and Ohmiya, K., Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem., 65, 41–47 (2001).
  • 16) Miller, G. L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426–428 (1959).
  • 17) Lamed, R., Kenig, R., Setter, E., and Bayer, E. A., Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb. Technol., 7, 37–41 (1985).
  • 18) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 19) Kim, H., Jung, K. H., and Pack, M. Y., Molecular characterization of xynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum. Appl. Microbiol. Biotechnol., 54, 521–527 (2000).
  • 20) Xie, H., Gilbert, H. J., Charnock, S. J., Davies, G. J., Williamson, M. P., Simpson, P. J., Raghothama, S., Fontes, C. M. G. A., Dias, F. M. V., Ferreira, L. M. A., and Bolam, D. N., Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry, 40, 9167–9176 (2001).
  • 21) Ali, M. K., Hayashi, H., Karita, S., Goto, M., Kimura, T., Sakka, K., and Ohmiya, K., Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem., 65, 41–47 (2001).
  • 22) Karita, S., Sakka, K., and Ohmiya, K., Cellulose-binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng., 81, 553–556 (1996).
  • 23) Black, G. W., Rixon, J. E., Clarke, J. H., Hazlewood, G. P., Theodorou, M. K., Morris, P., and Gilbert, H. J., Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem. J., 319, 515–520 (1996).
  • 24) Gill, J., Rixon, J. E., Bolam, D. N., McQueen-Mason, S., Simpson, P. J., Williamson, M. P., Hazlewood, G. P., and Gilbert, H. J., The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J., 342, 473–480 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.