609
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Purification, Characterization, and Antifungal Activity of Chitinases from Pineapple (Ananas comosus) Leaf

, &
Pages 189-196 | Received 16 Sep 2004, Accepted 22 Oct 2004, Published online: 22 May 2014

  • 1) Shinshi, H., Neuhas, J. M., Ryals, J., and Meins, F. J., Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol. Biol., 14, 357–368 (1990).
  • 2) Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., and Vad, K., Plant chitinases. Plant J., 3, 31–40 (1993).
  • 3) Graham, L. S., and Stickelen, M. B., Plant chitinases. Can. J. Bot., 72, 1057–1083 (1994).
  • 4) Theis, T., and Stahl, U., Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci., 61, 437–455 (2004).
  • 5) Neuhaus, J. M., Plant chitinases (PR-3, PR-4, PR-8, PR-11). In “Pathogenesis-Related Proteins in Plants”, eds. Datta, S. K., and Muthukrishnan, S., CRC Press, Bokca Raton, pp. 77–105 (1999).
  • 6) Brederode, F. T., Linthorst, H. J. M., and Bol, J. F., Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol. Biol., 17, 1117–1125 (1991).
  • 7) Métraux, J. P., and Boller, T., Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial, and fungal infections. Physiol. Mol. Plant Pathol., 28, 161–169 (1986).
  • 8) Tateishi, Y., Umemura, Y., and Esaka, M., A basic class I chitinase expression in winged bean is up-regulated by osmotic stress. Biosci. Biotechnol. Biochem., 65, 1663–1668 (2001).
  • 9) Cushman, J. C., Crassulacean acid metabolism: a plastic photosynthetic adaptation to arid environments. Plant Physiol., 127, 1439–1448 (2001).
  • 10) Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., Measurement of protein using bicinchoninic acid. Anal. Biochem., 150, 76–85 (1985).
  • 11) Imoto, T., and Yagishita, K., A simple activity measurement of lysozyme. Agric. Biol. Chem., 33, 1154–1156 (1971).
  • 12) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 13) Zacharius, R. M., Zell, T. E., Morrison, J. H., and Woodlock, J. J., Glycoprotein staining following electrophoresis on acrylamide gels. Anal. Biochem., 30, 148–152 (1969).
  • 14) Vesterberg, O., Isoelectric focusing of proteins in polyacrylamide gels. Biochim. Biophys. Acta, 257, 11–19 (1972).
  • 15) Yamagami, T., and Funatsu, G., Limited proteolysis and reduction-carboxymethylation of rye seed chitinase-a: role of the chitin-binding domain in its chitinase action. Biosci. Biotechnol. Biochem., 60, 1081–1086 (1996).
  • 16) Koga, D., Yoshioka, T., and Arakane, Y., HPLC analysis of anomeric formation and cleavage pattern by chitinolytic enzyme. Biosci. Biotechnol. Biochem., 62, 1643–1646 (1998).
  • 17) Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M., and Ishihara, M., Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Biosci. Biotechnol. Biochem., 66, 970–977 (2002).
  • 18) Jekel, P. A., Hartmann, B. H., and Beintema, J. J., The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Eur. J. Biochem., 200, 123–130 (1991).
  • 19) Yamagami, T., and Funatsu, G., The complete amino acid sequence of chitinase-a from the seeds of rye (Secale cereal). Biosci. Biotechnol. Biochem., 58, 322–329 (1994).
  • 20) Broekaert, I., Lee, H. I., Kush, A., Chua, N. H., and Raikhel, N., Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc. Natl. Acad. Sci. U.S.A., 87, 7633–7637 (1990).
  • 21) Yamagami, T., and Funatsu, G., The complete amino acid sequence of chitinase-c from the seeds of rye (Secale cereal). Biosci. Biotechnol. Biochem., 57, 1854–1861 (1993).
  • 22) Nielsen, K. K., Bojsen, K., Roepstorff, P., and Mikkelsen, J. D., A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose. Plant Mol. Biol., 25, 241–257 (1994).
  • 23) Zhao, K. J., and Chye, M. L., Methyl jasmonate induces expression of a novel Brassica juncea chitinase with two chitin-binding domains. Plant Mol. Biol., 40, 1009–1018 (1999).
  • 24) Iseli, B., Boller, T., and Neuhaus, J. M., The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol., 103, 221–226 (1993).
  • 25) Arakane, Y., Zhu, Q., Matsumiya, M., Muthukrishnan, S., and Kramer, K. J., Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem. Mol. Biol., 33, 631–648 (2003).
  • 26) Ohnuma, T., Taira, T., Yamagami, T., Aso, Y., and Ishiguro, M., Molecular cloning, functional expression, and mutagenesis of cDNA encoding class I chitinase from rye (Secale cereale) seeds. Biosci. Biotechnol. Biochem., 68, 324–332 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.