98
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and Characterization of a cDNA Encoding Phytochrome A in the Non-Photosynthetic Parasitic Plant, Orobanche minor Sm.

, , , , , , & show all
Pages 71-78 | Received 06 Aug 2004, Accepted 19 Oct 2004, Published online: 22 May 2014

  • 1) Briggs, W. R., and Olney, M. A., Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol., 125, 85–88 (2001).
  • 2) Clack, T., Mathews, S., and Sharrock, R. A., The phytochrome apoprotein family in Arabidopsis is encoded by 5 genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol., 25, 413–427 (1994).
  • 3) Tepperman, J. M., Zhu, T., Chang, H.-S., Wang, X., and Quail, P. H., Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci. USA, 98, 9437–9442 (2001).
  • 4) Bömmer, D., Haberhausen, G., and Zetsche, K., A large deletion in the plastid DNA of the holoparasitic flowering plant Cuscuta reflexa concerning two ribosomal proteins (rpl2, rpl23), one transfer RNA (trnI) and an ORF 2280 homologue. Curr. Genet., 24, 171–176 (1993).
  • 5) Delavault, P. M., Russo, N. M., Lusson, N. A., and Thalouarn, P. A., Organization of the reduced plastid genome of Lathraea clandestina, an achlorophyllous parasitic plant. Physiol. Plant., 96, 674–682 (1996).
  • 6) dePamphilis, C. W., and Palmer, J. D., Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature, 348, 337–339 (1990).
  • 7) Haberhausen, G., Valentin, K., and Zetsche, K., Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Mol. Gen. Genet., 232, 154–161 (1992).
  • 8) Haberhausen, G., and Zetsche, K., Functional loss of all ndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Plant Mol. Biol., 24, 217–222 (1994).
  • 9) Krause, K., Berg, S., and Krupinska, K., Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta, 216, 815–823 (2003).
  • 10) Wimpee, C. F., Wrobel, R. L., and Garvin, D. K., A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Mol. Biol., 17, 161–166 (1991).
  • 11) Wolfe, A. D., and dePamphilis, C. W., Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche. Plant Mol. Biol., 33, 965–977 (1997).
  • 12) Wolfe, A. D., and dePamphilis, C. W., The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol. Biol. Evol., 15, 1243–1258 (1998).
  • 13) Wolfe, K. H., Morden, C. W., and Palmer, J. D., Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc. Natl. Acad. Sci. USA., 89, 10648–10652 (1992).
  • 14) Chae, S. H., Yoneyama, K., Takeuchi, Y., and Joel, D. M., Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiol. Plant., 120, 328–337 (2004).
  • 15) Egley, G. H., Influence of the seed envelope and growth regulators upon seed dormancy in witchweed (Striga lutea Lour.). Ann. Bot., 36, 755–770 (1972).
  • 16) Lane, H. C., and Kasperbauer, M. J., Photomorphogenetic responses of dodder seedlings. Plant Physiol., 40, 109–116 (1965).
  • 17) Haidar, M. A., Characterisation of the interaction between cryptochromes and phytochromes in blue light-induced coiling and prehaustoria development of dodder (Cuscuta campestris) seedlings. Ann. Appl. Biol., 143, 57–62 (2003).
  • 18) Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25, 4876–4882 (1997).
  • 19) Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M., MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245 (2001).
  • 20) Livak, K. J., and Schmittgen, T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods, 25, 402–408 (2001).
  • 21) Kim, L., Kircher, S., Toth, R., Adam, E., Schäfer, E., and Nagy, F., Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J., 22, 125–133 (2000).
  • 22) Sheen, J., Metabolic repression of transcription in higher plants. Plant Cell, 2, 1027–1038 (1990).
  • 23) Sakamoto, K., and Nagatani, A., Nuclear localization activity of phytochrome B. Plant J., 10, 859–868 (1996).
  • 24) Quail, P. H., An emerging molecular map of the phytochromes. Plant Cell Environ., 20, 657–665 (1997).
  • 25) Kay, S. A., Keith, B., Shinozaki, K., Chye, M.-L., and Chua, N.-H., The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5′ upstream region. Plant Cell, 1, 351–360 (1989).
  • 26) Adam, E., Deak, M., Kay, S., Chua, N.-H., and Nagy, F., Sequence of a tobacco (Nicotiana tabacum) gene coding for type A phytochrome. Plant Physiol., 101, 1407–1408 (1993).
  • 27) Sharrock, R. A., and Quail, P. H., Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution and differential expression of a plant regulatory photoreceptor family. Genes Devel., 3, 1745–1757 (1989).
  • 28) Sato, N., Nucleotide sequence and expression of the phytochrome gene in Pisum sativum: differential regulation by light of multiple transcripts. Plant Mol. Biol., 11, 697–710 (1988).
  • 29) Lissemore, J. L., and Quail, P. H., Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa. Mol. Cell. Biol., 8, 4840–4850 (1988).
  • 30) Cantón, F. R., and Quail, P. H., Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis. Plant Phyisol., 121, 1207–1215 (1999).
  • 31) Quail, P. H., Phytochrome genes and their expression. In “Photomorphogenesis in Plants” 2nd edition, eds. Kendrick, R. E., and Kronenberg, G. H. M., Kluwer Academic, Dordrecht, pp. 71–104 (1994).
  • 32) Hisada, A., Hanzawa, H., Weller, J. L., Nagatani, A., Reid, J. B., and Furuya, M., Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures. Plant Cell, 12, 1063–1078 (2000).
  • 33) Casal, J. J., Davis, S. J., Kirchenbauer, D., Viczian, A., Yanovsky, M. J., Clough, R. C., Kircher, S., Jordan-Beebe, E. T., Schäfer, E., Nagy, F., and Vierstra, R. D., The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor. Plant Physiol., 129, 1127–1137 (2002).
  • 34) Yanovsky, M. J., Luppi, J. P., Kirchbauer, D., Ogorodnikova, O. B., Sineshchekov, V. A., Adam, E., Kircher, S., Staneloni, R. J., Schäfer, E., Nagy, F., and Casal, J. J., Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localization and a subset of responses. Plant Cell, 14, 1591–1603 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.