760
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Enzymatic Synthesis of Oligosaccharides and Neoglycoconjugates

&
Pages 1049-1059 | Published online: 22 May 2014

  • 1) Murata, T., and Usui, T., Preparation of oligosaccharide units library and its utilization. Biosci. Biotechnol. Biochem., 61, 1059–1066 (1997).
  • 2) Murata, T., and Usui, T., Enzymatic synthesis of important oligosaccharide units involved in N- and O-glycans. Trends Glycosci. Glycotechnol., 65, 161–174 (2000).
  • 3) Crout, D. H., and Vic, G., Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr. Opin. Chem. Biol., 2, 98–111 (1998).
  • 4) van Rantwijk, F., Woudenberg-van Oosterom, M., and Sheldon, R. A., Glycosidase-catalysed synthesis of alkyl glycosides. J. Mol. Cat. B: Enzymatic, 6, 511–532 (1999).
  • 5) Kato, T., Murata, T., Usui, T., and Park, E. Y., Improvement of the production of GFPuv-β1,3-N-acetylglucosaminyltransferase 2 fusion protein using a molecular chaperone-assisted insect-cell-based expression system. Biotechnol. Bioeng., 89, 424–433 (2005).
  • 6) Hidari, K. I., Horie, N., Murata, T., Miyamoto, D., Suzuki, T., Usui, T., and Suzuki, Y., Purification and characterization of a soluble recombinant human ST6Gal I functionally expressed in Escherichia coli. Glycoconj. J., 22, 1–11 (2005).
  • 7) Hanson, S., Best, M., Bryan, M. C., and Wong, C. H., Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends Biochem. Sci., 29, 656–663 (2004).
  • 8) Endo, T., and Koizumi, S., Large-scale production of oligosaccharides using engineered bacteria. Cur. Opin. Struct. Biol., 10, 536–541 (2000).
  • 9) Tsuboi, S., Isogai, Y., Hada, N., King, J. K., Hindsgaul, O., and Fukuda, M., 6′-Sulfo sialyl Lex but not 6-sulfo sialyl Lex expressed on the cell surface supports L-selectin-mediated adhesion. J. Biol. Chem., 271, 27213–27216 (1996).
  • 10) Galustian, C., Lawson, A. M., Komba, S., Ishida, H., Kiso, M., and Feizi, T., Sialyl-Lewisx sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem. Biophys. Res. Commun., 240, 748–751 (1997).
  • 11) Mitsuoka, C., Sawada-Kasugai, M., Ando-Furui, K., Izawa, M., Nakanishi, H., Nakamura, S., Ishida, H., Kiso, M., and Kannagi, R., Identification of a major carbohydrate capping group of the L-selectin ligand on high endotherial venules in human lymph nodes as 6-sulfo sialyl Lewisx. J. Biol. Chem., 273, 11225–11233 (1998).
  • 12) Schmith, B., Schachner, M., Ito, Y., Nakano, T., and Ogawa, T., Determination of structural elements of the L2/HNK-1 carbohydrate epitope required for its function. Glycoconj. J., 11, 345–352 (1994).
  • 13) Kamisago, S., Iwamori, M., Tai, T., Mitamura, K., Yazaki, Y., and Sugano, K., Role of sulfatides in adhesion of Helicobacter pylori to gastric cancer cells. Infect. Immun., 64, 624–628 (1996).
  • 14) Veerman, E. C., Bank, C. M., Namavar, F., Appelmelk, B. J., Bolscher, J. G., and Nieuw Amerongen, A. V., Sulfated glycans on oral mucin as receptors for Helicobacter pylori. Glycobiology, 7, 737–747 (1997).
  • 15) Hata, Y., Kita, T., and Murakami, M., Bovine milk inhibits both adhesion of Helicobacter pylori to sulfatide and Helicobacter pylori-induced vacuolation of Vero cells. Dig. Dis. Sci., 44, 1696–1702 (1999).
  • 16) Tanizaki, H., Tanaka, H., Iwata, H., and Kato, A., Activation of macrophages by sulfated glycopeptides in ovomucin, yolk membrane, and chalazae in chicken eggs. Biosci. Biotechnol. Biochem., 61, 1883–1889 (1997).
  • 17) Murata, T., Kosugi, M., Nakamura, T., Urashima, T., and Usui, T., Enzymatic synthesis of sulfated disaccharides using β-D-galactosidase-catalyzed transglycosylation. Biosci. Biotechnol. Biochem., 65, 2456–2464 (2001).
  • 18) Uzawa, H., Zeng, X., and Minoura, N., Synthesis of 6′-sulfodisaccharides by β-N-acetylhexosaminidase-catalyzed transglycosylation. Chem. Commun., 7, 100–101 (2003).
  • 19) Usui, T., Hayashi, Y., Nanjo, F., Sakai, K., and Ishido, Y., Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochim. Biophys. Acta, 923, 302–309 (1987).
  • 20) Usui, T., Hayashi, Y., Nanjo, F., and Ishido, Y., Enzymic synthesis of p-nitrophenyl N,N′,N″,N''″,N''''″-pentaacetyl-β-chitopentaoside in water-methanol system: significance as a substrate for lysozyme assay. Biochim. Biophys. Acta, 953, 179–184 (1988).
  • 21) Kobayashi, S., Kashiwa, K., Kawasaki, T., and Shoda, S., Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J. Am. Chem. Soc., 113, 3079–3084 (1991).
  • 22) Kobayashi, S., Wen, X., and Shoda, S., Specific preparation of artificial xylan: a new approach to polysaccharide synthesis by using cellulase as catalyst. Macromolecules, 29, 2698–2700 (1996).
  • 23) Fujita, M., Shoda, S., and Kobayashi, S., Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer. J. Am. Chem. Soc., 120, 6411–6412 (1998).
  • 24) Saitoh, H., Takagaki, K., Majima, M., Nakamura, T., Matsuki, A., Kasai, M., Narita, H., and Endo, M., Enzymatic reconstruction of glycosaminoglycan oligosaccharide chains using the transglycosylation reaction of bovine testicular hyaluronidase. J. Biol. Chem., 270, 3741–3747 (1995).
  • 25) Kitamikado, M., Ueno, R., and Nakamura, T., Enzymic degradation of whale cartilage keratosulfate. II. Identification of a keratosulfate-degrading bacterium. Bull. Jap. Soc. Sci. Fish., 36, 1174–1176 (1970).
  • 26) Fukuda, M., and Matsumura, G., Endo-β-galactosidase of Escherichia freundii: hydrolysis of pig colonic mucin and milk oligosaccharides by endoglycosidic action. Biochem. Biophys. Res. Commun., 64, 465–471 (1975).
  • 27) Fukuda, M. N., and Matsumura, G., Endo-β-galactosidase of Escherichia freundii: purification and endoglycosidic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein. J. Biol. Chem., 251, 6218–6225 (1976).
  • 28) Fukuda, M. N., Watanabe, K., and Hakomori, S.-I., Release of oligosaccharides from various glycosphingolipids by endo-β-galactosidase. J. Biol. Chem., 253, 6814–6819 (1978).
  • 29) Nakagawa, H., Yamada, T., Chien, J.-L., Gardas, A., Kitamikado, M., Li, S.-C., and Li, Y.-T., Isolation and characterization of an endo-β-galactosidase from a new strain of Escherichia freundii. J. Biol. Chem., 255, 5955–5959 (1980).
  • 30) Fukuda, M. N., Purification and characterization of endo-β-galactosidase from Escherichia freundii induced by hog gastric mucin. J. Biol. Chem., 256, 3900–3905 (1981).
  • 31) Scudder, P., Uemura, K., Dolby, J., Fukuda, M. N., and Feizi, T., Isolation and characterization of an endo-β-galactosidase from Bacteroides fragilis. Biochem. J., 213, 485–494 (1983).
  • 32) Scudder, P., Hanfland, P., Uemura, K., and Feizi, T., Endo-β-D-galactosidases of Bacteroides fragilis and Escherichia freundii hydrolyze linear but not branched oligosaccharide domains of glycolipids of the neolacto series. J. Biol. Chem., 259, 6586–6592 (1984).
  • 33) Scudder, P., Tang, P. W., Hounsell, E. F., Lawson, A. M., Mehmet, H., and Feizi, T., Isolation and characterization of sulphated oligosaccharides released from bovine corneal keratan sulphate by the action of endo-β-galactosidase. Eur. J. Biochem., 157, 365–373 (1986).
  • 34) Scudder, P., Lawson, A. M., Hounsell, E. F., Carruthers, R. A., Childs, R. A., and Feizi, T., Characterization of oligosaccharides released from human-blood-group O erythrocyte glycopeptides by the endo-β-galactosidase of Bacteroides fragilis: a study of the enzyme susceptibility of branched poly(N-acetyllactosamine) structures. Eur. J. Biochem., 168, 585–593 (1987).
  • 35) Kitamikado, M., Ito, M., and Li, Y. T., Isolation and characterization of a keratan sulfate-degrading endo-β-galactosidase from Flavobacterium keratolyticus. J. Biol. Chem., 256, 3906–3909 (1981).
  • 36) Ito, M., Hirabayashi, Y., and Yamagata, T., Substrate specificity of endo-β-galactosidases from Flavobacterium keratolyticus and Escherichia freundii is different from that of Pseudomonas sp. J. Biochem. (Tokyo), 100, 773–780 (1986).
  • 37) Leng, L., Zhu, A., Zhang, Z., Hurst, R., and Goldstein, J., Cloning, functional expression and purification of endo-β-galactosidase from Flavobacterium keratolyticus. Gene, 222, 187–194 (1998).
  • 38) Murata, T., Hattori, T., Amarume, S., Koichi, A., and Usui, T., Kinetic studies on endo-β-galactosidase by a novel colorimetric assay and synthesis of N-acetyllactosamine-repeating oligosaccharide β-glycosides using its transglycosylation activity. Eur. J. Biochem., 270, 3709–3719 (2003).
  • 39) Murata, T., Honda, H., Hattori, T., and Usui, T., Enzymatic synthesis of poly-N-acetyllactosamines as potential substrates for endo-β-galactosidase-catalyzed hydrolytic and transglycosylation reactions. Biochim. Biophys. Acta, 1722, 60–68 (2005).
  • 40) Vic, G., and Crout, D. H. G., Synthesis of glucosidic derivatives with a spacer arm by reverse hydrolysis using almond β-D-glucosidase. Tetrahedron: Asymmetry, 5, 2513–2516 (1994).
  • 41) Vic, G., Hastings, J. J., and Crout, D. H. G., Glycosidase-catalysed synthesis of glycosides by an improved procedure for reverse hydrolysis: application to the chemoenzymatic synthesis of galactopyranosyl-(1→4)-O-β-galactopyranoside derivatives. Tetrahedron: Asymmetry, 7, 1973–1984 (1996).
  • 42) Yasutake, N., Totani, K., Harada, Y., Haraguchi, S., Murata, T., and Usui, T., Efficient synthesis of glyceroyl β-lactoside and its derivatives through a condensation reaction by cellulase. Biochim. Biophys. Acta, 1620, 252–258 (2003).
  • 43) Yasutake, N., Totani, K., Harada, Y., Haraguchi, S., Murata, T., and Usui, T., Synthesis of glyceroyl β-N-acetyllactosaminide and its derivatives through a condensation reaction by cellulase. Biosci. Biotechnol. Biochem., 67, 1530–1536 (2003).
  • 44) Mackenzie, L. F., Wang, Q., Warren, R. A. J., and Withers, S. G., Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc., 120, 5583–5584 (1998).
  • 45) Jakeman, D. L., and Withers, S. G., On expanding the repertoire of glycosynthases: mutant β-galactosidases forming β-(1,6)-linkages. Can. J. Chem., 80, 866–870 (2002).
  • 46) Hrmova, M., Imai, T., Rutten, S. J., Fairweather, J. K., Pelosi, L., Bulone, V., Driguez, H., and Fincher, G. B., Mutated barley (1,3)-β-D-glucan endohydrolases synthesize crystalline (1,3)-β-D-glucans. J. Biol. Chem., 277, 30102–30111 (2002).
  • 47) Okuyama, M., Mori, H., Watanabe, K., Kimura, A., and Chiba, S., α-Glucosidase mutant catalyzes “α-glycosynthase”-type reaction. Biosci. Biotechnol. Biochem., 66, 928–933 (2002).
  • 48) Fairweather, J. K., Faijes, M., Driguez, H., and Planas, A., Specificity studies of Bacillus 1,3-1,4-β-glucanases and application to glycosynthase-catalyzed transglycosylation. ChemBioChem, 3, 866–873 (2002).
  • 49) Jahn, M., Stoll, D., Warren, R. A. J., Szabó, L., Singh, P., Gilbert, H. J., Ducros, V. M.-A., Davies, G. J., and Withers, S. G., Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chem. Commun., 12, 1327–1329 (2003).
  • 50) Fort, S., Boyer, V., Greffe, L., Davies, G. J., Moroz, O., Christiansen, L., Schülein, M., Cottaz, S., and Driguez, H., Highly efficient synthesis of β(1→4)-oligo- and -polysaccharides using a mutant cellulase. J. Am. Chem. Soc., 122, 5429–5437 (2000).
  • 51) Jahn, M., Marles, J., Warren, R. A. J., and Withers, S. G., Thioglycoligases: mutant glycosidases for thioglycoside synthesis. Angew. Chem. Int. Ed., 42, 352–354 (2003).
  • 52) Murata, T., Inukai, T., Suzuki, M., Yamagishi, M., and Usui, T., Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj. J., 16, 189–195 (1999).
  • 53) Johanson, K. F., Synthesis of oligosaccharides by bacterial enzymes. Glycoconj. J., 16, 141–146 (1999).
  • 54) Totani, K., Shimizu, K., Harada, Y., Murata, T., and Usui, T., Enzymatic synthesis of oligosaccharide containing Lex unit by using partially purified chicken serum. Biosci. Biotechnol. Biochem., 66, 636–640 (2002).
  • 55) Endo, T., Koizumi, S., Tabata, K., and Ozaki, A., Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl. Microbiol. Biotechnol., 53, 257–261 (2000).
  • 56) Priem, B., Gilbert, M., Wakarchuk, W. W., Heyraud, A., and Samain, E., A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology, 12, 235–240 (2002).
  • 57) Antoine, T., Priem, B., Heyraud, A., Greffe, L., Gilbert, M., Wakarchuk, W. W., Lam, J. S., and Samain, E., Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. ChemBioChem, 4, 406–412 (2003).
  • 58) Mizuno, M., Haneda, K., Iguchi, R., Muramoto, I., Kawakami, T., Aimoto, S., Yamamoto, K., and Inazu, T., Synthesis of a glycopeptide containing oligosaccharides: chemoenzymatic synthesis of eel calcitonin analogues having natural N-linked oligosaccharides. J. Am. Chem. Soc., 121, 284–290 (1999).
  • 59) Haneda, K., Inazu, T., Mizuno, M., Iguchi, R., Tanabe, H., Fujimori, K., Yamamoto, K., Kumagai, H., Tsumori, K., and Munekata, E., Chemo-enzymatic synthesis of a bioactive peptide containing a glutamine-linked oligosaccharide and its characterization. Biochim. Biophys. Acta, 1526, 242–248 (2001).
  • 60) Saskiawan, I., Mizuno, M., Inazu, T., Haneda, K., Harashima, S., Kumagai, H., and Yamamoto, K., Chemo-enzymatic synthesis of the glycosylated α-mating factor of Saccharomyces cerevisiae and analysis of its biological activity. Arch. Biochem. Biophys., 406, 127–134 (2002).
  • 61) Ohta, T., Miura, N., Fujitani, N., Nakajima, F., Niikura, K., Sadamoto, R., Guo, C. T., Suzuki, T., Suzuki, Y., Monde, K., and Nishimura, S., Glycotentacles: synthesis of cyclic glycopeptides, toward a tailored blocker of influenza virus hemagglutinin. Angew. Chem. Int. Ed., 42, 5186–5189 (2003).
  • 62) Sato, M., Sadamoto, R., Niikura, K., Monde, K., Kondo, H., and Nishimura, S., Site-specific introduction of sialic acid into insulin. Angew. Chem. Int. Ed., 43, 1516–1520 (2004).
  • 63) Velcich, A., Yang, W., Heyer, J., Fragale, A., Nicholas, C., Viani, S., Kucherlapati, R., Lipkin, M., Yang, K., and Augenlicht, L., Colorectal cancer in mice genetically deficient in the mucin Muc2. Science, 295, 1726–1729 (2002).
  • 64) Kawakubo, M., Ito, Y., Okimura, Y., Kobayashi, M., Sakura, K., Kasama, S., Fukuda, M. N., Fukuda, M., Katsuyama, T., and Nakayama, J., Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science, 305, 1003–1006 (2004).
  • 65) Totani, K., Kubota, T., Kuroda, T., Murata, T., Hidari, K. I., Suzuki, T., Suzuki, Y., Kobayashi, K., Ashida, H., Yamamoto, K., and Usui, T., Chemoenzymatic synthesis and application of glycopolymers containing multivalent sialyloligosaccharides with a poly(L-glutamic acid) backbone for inhibition of infection by influenza viruses. Glycobiology, 13, 315–326 (2003).
  • 66) Kobasa, D., Takada, A., Shinya, K., Hatta, M., Halfmann, P., Theriault, S., Suzuki, H., Nishimura, H., Mitamura, K., Sugaya, N., Usui, T., Murata, T., Maeda, Y., Watanabe, S., Suresh, M., Suzuki, T., Suzuki, Y., Feldmann, H., and Kawaoka, Y., Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature, 431, 703–707 (2004).
  • 67) Harada, Y., Murata, T., Totani, K., Kajimoto, T., Masum, S. M., Tamba, Y., Yamazaki, M., and Usui, T., Design and facile synthesis of neoglycolipids as lactosylceramide mimetics and their transformation into glycoliposomes. Biosci. Biotechnol. Biochem., 69, 166–178 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.