191
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Identification of a Catalytic Residue of Clostridium paraputrificumN-Acetyl-β-D-glucosaminidase Nag3A by Site-Directed Mutagenesis

, , , , , & show all
Pages 1127-1133 | Received 26 Aug 2005, Accepted 07 Jan 2006, Published online: 22 May 2014

  • 1) Evvyernie, D., Yamazaki, S., Morimoto, K., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K., Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J. Biosci. Bioeng., 89, 596–601 (2000).
  • 2) Evvyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K., Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J. Biosci. Bioeng., 91, 339–343 (2001).
  • 3) Morimoto, K., Kimura, T., Sakka, K., and Ohmiya, K., Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol. Lett., 246, 229–234 (2005).
  • 4) Morimoto, K., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K., Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol., 179, 7306–7314 (1997).
  • 5) Morimoto, K., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K., Sequencing, expression, and transcription analysis of the Clostridium paraputrificum chiA gene encoding chitinase ChiA. Appl. Microbiol. Biotechnol., 51, 340–347 (1999).
  • 6) Li, H., Morimoto, K., Katagiri, N., Kimura, T., Sakka, K., and Ohmiya, K., A novel β-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl. Microbiol. Biotechnol., 60, 420–427 (2002).
  • 7) Li, H., Morimoto, K., Kimura, T., Sakka, K., and Ohmiya, K., A new type of β-N-acetylglucosaminidase from hydrogen-producing Clostridium paraputrificum M-21. J. Biosci. Bioeng., 96, 268–274 (2003).
  • 8) Coutinho, P. M., and Henrissat, B., The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In “Genetics, Biochemistry and Ecology of Cellulose Degradation,” eds. Ohmiya, K., Hayashi, K., Sakka, K., Kobayashi, Y., Karita, S., and Kimura, T., Uni Publishers, Tokyo, pp. 15–23 (1999).
  • 9) Tsujibo, H., Fujimoto, K., Tanno, H., Miyamoto, K., Imada, C., Okami, Y., and Inamori, Y., Gene sequence, purification and characterization of N-acetyl-beta-glucosaminidase from a marine bacterium, Alteromonas sp. strain O-7. Gene, 146, 111–115 (1994).
  • 10) Chitlaru, E., and Roseman, S., Molecular cloning and characterization of a novel beta-N-acetyl-D-glucosaminidase from Vibrio furnissii. J. Biol. Chem., 271, 33433–33439 (1996).
  • 11) Cheng, Q., Li, H., Merdek, K., and Park, J. T., Molecular characterization of the β-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J. Bacteriol., 182, 4836–4840 (2000).
  • 12) Varghese, J. N., Hrmova, M., and Fincher, G. B., Three-dimensional structure of a barley β-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure, 7, 179–190 (1999).
  • 13) Hrmova, M., Gori, R. D., Smith, B. J., Vasella, A., Varghese, J. N., and Fincher, G. B., Three-dimensional structure of the barley β-D-glucan glucohydrolase in complex with a transition state mimic. J. Biol. Chem., 279, 4970–4980 (2004).
  • 14) Hrmova, M., Varghese, J. N., Gori, R. D., Smith, B. J., Driguez, H., and Fincher, G. B., Catalytic mechanism and reaction intermediates along the hydrolytic pathway of a plant β-D-glucan glucohydrolase. Structure, 9, 1005–1016 (2001).
  • 15) Mursheda, K. A., Hayashi, H., Karita, S., Goto, M., Kimura, T., Sakka, K., and Ohmiya, K., Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem., 65, 41–47 (2001).
  • 16) Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R., Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51–59 (1989).
  • 17) O’Brien, M., and Colwell, R. R., A rapid test of chitinase activity that uses 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide. Appl. Environ. Microbiol., 53, 1718–1720 (1987).
  • 18) Bradford, M. M., A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 19) Umekawa, H., Endo, T., and Hidaka, H., A rapid separation of bovine brain S-100a and S-100b protein and related conformation studies. Arch. Biochem. Biophys., 227, 147–153 (1983).
  • 20) Vocadlo, D. J., Mayer, C., He, S., and Withers, S. G., Mechanism of action and identification of Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-β-D-glucosaminidase using 2-acetamido-2-deoxy-5-fluoro-α-L-idopyranosyl fluoride. Biochemistry, 39, 117–126 (2000).
  • 21) Malcolm, B. A., Rosenberg, S., Corey, M. J., Allen, J. S., Baetselier, A. D., and Kirsch, J. F., Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc. Natl. Acad. Sci. USA, 86, 133–137 (1989).
  • 22) Hashimoto, Y., Yamada, K., Motoshima, H., Omura, T., Yamada, H., Yasukochi, T., Miki, T., Ueda, T., and Imoto, T., A mutation study of catalytic residue Asp 52 in hen egg lysozyme. J. Biochem., 119, 145–150 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.