608
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Induction of a Ribotoxic Stress Response That Stimulates Stress-Activated Protein Kinases by 13-Deoxytedanolide, an Antitumor Marine Macrolide

, , , , , & show all
Pages 161-171 | Received 28 Jul 2005, Accepted 17 Sep 2005, Published online: 22 May 2014

  • 1) Laskin, J. D., Heck, D. E., and Laskin, D. L., The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol. Sci., 69, 289–291 (2002).
  • 2) Bogoyevitch, M. A., Ketterman, A. J., and Sugden, P. H., Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J. Biol. Chem., 270, 29710–29717 (1995).
  • 3) Hazzalin, C. A., Cano, E., Cuenda, A., Barratt, M. J., Cohen, P., and Mahadevan, L. C., p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr. Biol., 6, 1028–1031 (1996).
  • 4) Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T. H., Pearson, J. A., Chen, S. L., and Magun, B. E., Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol., 17, 3373–3381 (1997).
  • 5) Cano, E., Hazzalin, C. A., and Mahadevan, L. C., Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol. Cell. Biol., 14, 7352–7362 (1994).
  • 6) Zinck, R., Cahill, M. A., Kracht, M., Sachsenmaier, C., Hipskind, R. A., and Nordheim, A., Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol. Cell. Biol., 15, 4930–4938 (1995).
  • 7) Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T. H., Pearson, J. A., and Magun, B. E., Ultraviolet radiation triggers the ribotoxic stress response in mammalian cells. J. Biol. Chem., 273, 15794–15803 (1998).
  • 8) Kochi, S. K., and Collier, R. J., DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis. Exp. Cell. Res., 208, 296–302 (1993).
  • 9) Polverino, A. J., and Patterson, S. D., Selective activation of caspases during apoptotic induction in HL-60 cells: Effects of a tetrapeptide inhibitor. J. Biol. Chem., 272, 7013–7021 (1997).
  • 10) Shifrin, V. I., and Anderson, P., Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem., 274, 13985–13992 (1999).
  • 11) Davis, R. J., Signal transduction by the JNK group of MAP kinases. Cell, 103, 239–252 (2000).
  • 12) Matsuzawa, A., and Ichijo, H., Molecular mechanisms of the decision between life and death: regulation of apoptosis by apoptosis signal-regulating kinase 1. J. Biochem., 130, 1–8 (2001).
  • 13) Fusetani, N., Sugawara, T., Matsunaga, S., and Hirota, H., Cytotoxic metabolites of the marine sponge Mycale adhaerens Lambe. J. Org. Chem., 56, 4971–4974 (1991).
  • 14) Nishimura, S., Matsunaga, S., Yoshida, M., Hirota, H., Yokoyama, S., and Fusetani, N., 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to 60S large ribosomal subunit. Bioorg. Med. Chem., 13, 449–454 (2005).
  • 15) Massague, J., Blain, S. W., and Lo, R. S., TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 103, 295–309 (2000).
  • 16) Nishimura, S., Matsunaga, S., Yoshida, S., Nakao, Y., Hirota, H., and Fusetani, N., Structure-activity relationship study on 13-deoxytedanolide, a highly antitumor macrolide from the marine sponge Mycale adhaerens. Bioorg. Med. Chem., 13, 455–462 (2005).
  • 17) Gannon, J. V., and Lane, D. P., Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature, 349, 802–806 (1991).
  • 18) Akakura, S., Yoshida, M., Yoneda, Y., and Horinouchi, S., A role for Hsc70 in regulating nucleo-cytoplasmic transport of a temperature-sensitive p53 (p53Val135). J. Biol. Chem., 276, 14649–14657 (2001).
  • 19) Masuoka, Y., Shin-Ya, K., Kim, Y. B., Yoshida, M., Nagai, K., Suzuki, K., Hayakawa, Y., and Seto, H., Diheteropeptin, a new substance with TGF-beta-like activity, produced by a fungus, Diheterospora chlamydosporia. I. Production, isolation and biological activities. J. Antibiotics, 53, 788–792 (2000).
  • 20) Hannigan, M., Zhan, L., Ai, Y., and Huang, C. K., The role of p38 MAP kinase in TGF-beta1-induced signal transduction in human neutrophils. Biochem. Biophys. Res. Commun., 246, 55–58 (1998).
  • 21) Hanafusa, H., Ninomiya-Tsuji, J., Masuyama, N., Nishita, M., Fujisawa, J., Shibuya, H., Matsumoto, K., and Nishida, E., Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J. Biol. Chem., 274, 27161–22167 (1999).
  • 22) Sano, Y., Harada, J., Tashiro, S., Gotoh-Mandeville, R., Maekawa, T., and Ishii, S., ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J. Biol. Chem., 274, 8949–8957 (1999).
  • 23) Liao, J. H., Chen, J. S., Chai, M. Q., Zhao, S., and Song, J. G., The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes. Cell Res., 11, 89–94 (2001).
  • 24) Wang, L., Ma, R., Flavell, R. A., and Choi, M. E., Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for activation of p38alpha and p38delta MAPK isoforms by TGF-beta 1 in murine mesangial cells. J. Biol. Chem., 277, 47257–47262 (2002).
  • 25) Engel, M. E., McDonnell, M. A., Law, B. K., and Moses, H. L., Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J. Biol. Chem., 274, 37413–37420 (1999).
  • 26) Hocevar, B. A., Brown, T. L., and Howe, P. H., TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J., 18, 1345–1356 (1999).
  • 27) Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., and Gotoh, Y., Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science, 275, 90–94 (1997).
  • 28) Matsukawa, J., Matsuzawa, A., Takeda, K., and Ichijo, H., The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem., 136, 261–265 (2004).
  • 29) Chang, L., and Karin, M., Mammalian MAP kinase signalling cascades. Nature, 410, 37–40 (2001).
  • 30) Laping, N. J., Grygielko, E., Mathur, A., Butter, S., Bomberger, J., Tweed, C., Martin, W., Fornwald, J., Lehr, R., Harling, J., Gaster, L., Callahan, J. F., and Olson, B. A., Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol. Pharmacol., 62, 58–64 (2002).
  • 31) Konkle, B. A., Schuster, S. J., Kelly, M. D., Harjes, K., Hassett, D. E., Bohrer, M., and Tavassoli, M., Plasminogen activator inhibitor-1 messenger RNA expression is induced in rat hepatocytes in vivo by dexamethasone. Blood, 79, 2636–2642 (1992).
  • 32) Zhao, W., Spitz, D. R., Oberley, L. W., and Robbins, M. E., Redox modulation of the pro-fibrogenic mediator plasminogen activator inhibitor-1 following ionizing radiation. Cancer Res., 61, 5537–5543 (2001).
  • 33) Yamamoto, K., Takeshita, K., Shimokawa, T., Yi, H., Isobe, K., Loskutoff, D. J., and Saito, H., Plasminogen activator inhibitor-1 is a major stress-regulated gene: implications for stress-induced thrombosis in aged individuals. Proc. Natl. Acad. Sci. U.S.A., 99, 890–895 (2002).
  • 34) Vulin, A. I., and Stanley, F. M., Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J. Biol. Chem., 279, 25172–25178 (2004).
  • 35) Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A., and Davis, R. J., Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 288, 870–874 (2000).
  • 36) Mizumura, Y., Matsumura, Y., Yokoyama, M., Okano, T., Kawaguchi, T., Moriyasu, F., and Kakizoe, T., Incorporation of the anticancer agent KRN5500 into polymeric micelles diminishes the pulmonary toxicity. Jpn. J. Cancer Res., 93, 1237–1243 (2002).
  • 37) Kucuk, O., Young, M. L., Habermann, T. M., Wolf, B. C., Jimeno, J., and Cassileth, P. A., Phase II trial of didemnin B in previously treated non-Hodgkin’s lymphoma: an Eastern Cooperative Oncology Group (ECOG) Study. Am. J. Clin. Oncol., 23, 273–277 (2000).
  • 38) Semb, K. A., Aamdal, S., Mette, E., Ingvar, C., Gullaksen, N., and Osmundsen, K., Zilascorb (2H), a low-toxicity protein synthesis inhibitor that exhibits signs of anticancer activity in malignant melanoma. Anticancer Drugs, 9, 797–802 (1998).
  • 39) Caraglia, M., Budillon, A., Vitale, G., Lupoli, G., Tagliaferri, P., and Abbruzzese, A., Modulation of molecular mechanisms involved in protein synthesis machinery as a new tool for the control of cell proliferation. Eur. J. Biochem., 267, 3919–3936 (2000).
  • 40) Meric, F., and Hunt, K. K., Translation initiation in cancer: a novel target for therapy. Mol. Cancer Ther., 1, 971–979 (2002).
  • 41) Smith, A. B., 3rd, Adams, C. M., Barbosa, S. A., and Degnan, A. P., A unified approach to the tedanolides: total synthesis of (+)-13-deoxytedanolide. Proc. Natl. Acad. Sci. U.S.A., 101, 12042–12047 (2004).
  • 42) Julian, L. D., Newcom, J. S., and Roush, W. R., Total synthesis of (+)-13-deoxytedanolide. J. Am. Chem. Soc., 127, 6186–6187 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.