515
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Bombyx mori Chitinase against Japanese Pine Sawyer (Monochamus alternatus) Adults as a Biopesticide

, , , , , & show all
Pages 219-229 | Received 11 Aug 2005, Accepted 26 Sep 2005, Published online: 22 May 2014

  • 1) Boulter, D., Insect pest control by copying nature using genetically engineered crops. Phytochem., 34, 1453–1466 (1993).
  • 2) Baker, J. E., and Kramer, K. J., Biotechnological approach for stored-product insect pest management. Postharvest News Inf., 7, 11N–18N (1996).
  • 3) Shewry, P. S., and Lucas, J. A., Plant proteins that confer resistance to pests and pathogens. Adv. Bot. Res., 26, 1351–1392 (1997).
  • 4) Kramer, K. J., and Muthukrishnan, S., Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem. Mol. Biol., 27, 887–900 (1997).
  • 5) Wessels, J. G. H., and Sietsma, J. H., Fungal cell walls: a survey. In “Plant Carbohydrates II”, eds. Tanner, W., and Loewus, F. A., Springer-Verlag, Berlin, pp. 352–394 (1981).
  • 6) Kramer, K. J., and Koga, D., Insect chitin: physical state, synthesis, degradation and metabolic regulation. Insect Biochem., 16, 851–877 (1986).
  • 7) Merzendorfer, H., and Zimoch, L., Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol., 206, 4393–4412 (2003).
  • 8) Jeuniaux, C., Dandrifosse, G., and Micha, J. C., Characterization and evolution of chitinolytic enzymes in lower vertebrates. Biochem. Syst. Ecol., 10, 365–372 (1982).
  • 9) Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., and Vad, K., Plant chitinases. Plant J., 3, 31–40 (1993).
  • 10) Gooday, G. W., The ever-widening diversity of chitinase. Carbohydr. Eur., 19, 18–22 (1997).
  • 11) Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 280, 309–316 (1991).
  • 12) Koga, D., Mitsustomi, M., Kono, M., and Matsumiya, M., Biochemistry of chitinases. In “Chitin and Chitinases”, eds. Jolles, P., and Muzzarelli, R. A. A., Birkhauser Publishing, Basel, pp. 111–123 (1999).
  • 13) Sahai, A. S., and Manocha, M. S., Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev., 11, 317–338 (1993).
  • 14) Gooday, G. W., Aggressive and defensive roles for chitinases. In “Chitin and Chitinases”, eds. Jolles, P., and Muzzarelli, R. A. A., Birkhauser Publishing, Basel, pp. 157–169 (1999).
  • 15) Dziadik-Turner, C., Koga, D., Mai, M. S., and Kramer, K. J., Purification and characterization of two β-N-acetylhexosaminidases from the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Arch. Biochem. Biophys., 212, 546–560 (1981).
  • 16) Koga, D., Jilka, J., and Kramer, K. J., Insect endochitinases: glycoproteins from moulting fluid, integument and pupal haemolymph of Manduca sexta L. Insect Biochem., 13, 295–305 (1983).
  • 17) Filho, B. P. D., Lemos, F. J. A., Secundino, N. F. C., Pascoa, V., Pereira, S. T., and Pimenta, P. F. P., Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: a chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem. Mol. Biol., 32, 1723–1729 (2002).
  • 18) Gongora, C. E., Wang, S., Barbehenn, R. V., and Broadway, R. M., Chitinolytic enzymes from Streptomyces albidoflavus expressed in tomato plants: effects on Trichoplusia ni. Entomol. Exp. Appl., 99, 193–204 (2001).
  • 19) Peters, W., Peritrophic membranes. In “Zoophysiology”, eds. Bradshaw, S. D., Burggren, W., Heller, H. C., Ishii, S., Langer, H., Neuweiler, G., and Randall, D. J., Springer, Berlin, pp. 1–238 (1992).
  • 20) Tellam, R. L., The peritrophic matrix. In “Biology of the Insect Midgut”, eds. Lehane, M. J., and Billingsley, P. F., Chapman and Hall, London, pp. 86–114 (1996).
  • 21) Lehane, M. J., Peritrophic matrix structure and function. Annu. Rev. Entomol., 42, 525–550 (1997).
  • 22) Terra, W. R., The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch. Insect Biochem. Physiol., 47, 47–61 (2001).
  • 23) Barbehenn, R. V., Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch. Insect Biochem. Physiol., 47, 86–99 (2001).
  • 24) Cohen, E., Chitin synthesis and degradation as targets for pesticide action. Arch. Biochem. Physiol., 22, 245–261 (1993).
  • 25) Wang, P., and Granados, R. R., Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch. Insect Biochem. Physiol., 47, 110–118 (2001).
  • 26) Shahabuddin, M., Toyoshima, T., Aikawa, M., and Kaslow, D. C., Transmisssion-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc. Natl. Acad. Sci. U.S.A., 90, 4266–4270 (1993).
  • 27) Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., Ginzberg, I., Koncz-Kalman, Z., Koncz, C., Schell, J., and Zilberstein, A., Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbial., 62, 3581–3586 (1996).
  • 28) Otsu, Y., Mori, H., Komuta, K., Shimizu, H., Nogawa, S., Matsuda, Y., Nonomura, T., Sakuratani, Y., Tosa, Y., Mayama, S., and Toyoda, H., Suppression of leaf feeding and oviposition of phytophagous ladybird beetles (Coleoptera: Coccinellidae) by chitinase gene-transformed phylloplane bacteria and their specific bacteriophages entrapped in alginate gel beads. J. Econ. Ent., 96, 555–563 (2003).
  • 29) Huber, M., Cabib, E., and Miller, L. H., Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc. Natl. Acad. Sci. U.S.A., 88, 2807–2810 (1991).
  • 30) Vinetz, J. M., Valenzuela, J. G., Specht, C. A., Aravind, L., Langer, R. C., Ribeiro, J. M. C., and Kaslow, D. C., Chitinases of the avian malarial parsite Plasmodeum gallinaceum, a class of enzymes necessary for parasitic invasion of the mosquito midgut. J. Biol. Chem., 275, 10331–10341 (2000).
  • 31) Linthorst, H. J. M., Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci., 10, 123–150 (1991).
  • 32) Gatehouse, A. M. R., Davison, G. M., Newell, C. A., Merryweather, A., Hamilton, W. D. O., Burgess, E. P. J., Gilbert, R. J. C., and Gatehouse, J. A., Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol. Breed., 3, 49–63 (1997).
  • 33) Berenbaum, M., Adaptive significance of midgut pH in larval Lepidoptera. Am. Nat., 115, 138–146 (1980).
  • 34) Gringorten, J. L., Crawford, D. N., and Harvey, W. R., High pH in the ectoperitrophic space of the larval lepidopteran midgut. J. Exp. Bot., 183, 353–359 (1993).
  • 35) Gomes, V. M., Oliveira, A. E. A., and Xavier-Filho, J., A chitinase and a β-1,3-glucanase isolated from the seeds of cowpea (Vigna unguiculata L. Walp.) inhibit the growth of fungi and insect pests of the seed. J. Sci. Food Agric., 72, 86–90 (1996).
  • 36) Ding, X., Gopalakrishnan, B., Johnson, L. B., White, F. F., Wang, X., Morgan, T. D., Kramer, K. J., and Muthukrishnan, S., Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res., 7, 77–84 (1998).
  • 37) Powell, K. S., Gatehouse, A. M. R., Hilder, V. A., and Gatehouse, J. A., Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. Appl., 66, 119–126 (1993).
  • 38) Tellam, R. L., and Eisemann, C., Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochem. Mol. Biol., 30, 1189–1201 (2000).
  • 39) Wang, X., Ding, X., Gopalakrishnan, B., Morgan, T. D., Johnson, L., White, F. F., Muthukrishnan, S., and Kramer, K. J., Characterization of a 46 kDa insect chitinase from transgenic tobacco. Insect Biochem. Mol. Biol., 26, 1055–1064 (1996).
  • 40) Gopalakrishnan, B., Muthukrishnan, S., and Kramer, K. J., Baculovirus-mediated expression of a Manduca sexta chitinase gene: properties of the recombinant protein. Insect Biohem. Mol. Biol., 25, 255–265 (1995).
  • 41) Fitches, E., Wilkinson, H., Bell, H., Bown, D. P., Gatehouse, J. A., and Edwards, J. P., Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochem. Mol. Biol., 34, 1037–1050 (2004).
  • 42) Kabir, K. E., Hirowatari, D., Watanabe, K., and Koga, D., Purification and Characterization of a Novel Isozyme of Chitinase from Bombyx mori. Biosci. Biotechnol. Biochem., 70, 252–262 (2006).
  • 43) Harper, M. S., Hopkins, T. L., and Czapla, T. H., Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell, 30, 166–176 (1998).
  • 44) Johnson, K. S., and Rabosky, D., Phylogenetic distribution of cysteine proteinases in beetles: evidence for an evolutionary shift to an alkaline digestive strategy in cerambycidae. Comp. Biochim. Physiol., B126, 609–619 (2000).
  • 45) Dias, A. B., and Terra, W. R., Survey of midgut enzymes and midgut pH in insects of different orders. Abstract book II, XXI International congress of entomology, Brazil, August 20–26, p. 611 (2000).
  • 46) Grayson, J. M., Digestive tract pH of six species of coleoptera. Ann. Entomol. Soc. Am., 51, 403–405 (1958).
  • 47) Ryerse, J. S., Purcell, J. P., and Sammons, R. D., Structure and formation of the peritrophic membrane in the larvae of the southern corn rootworm, Diabrotica undecimpunctata. Tissue Cell, 26, 431–437 (1994).
  • 48) Hopkins, T. L., and Harper, M. S., Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch. Insect Biochem. Physiol., 47, 100–109 (2001).
  • 49) Ferreira, C., and Terra, W. R., Spatial organization of digestion, secretory mechanisms and digestive enzyme properties in Pheropsophus aequinoctialis (Coleoptera:Carabidae). Insect Biochem., 19, 383–391 (1989).
  • 50) Richards, A. G., and Richards, P. A., The peritrophic membrane of insects. Annu. Rev. Entomol., 24, 219–240 (1977).
  • 51) Darken, M. A., Applications of fluorescent brighteners in biological techniques. Science, 133, 1704–1705 (1961).
  • 52) Maeda, H., and Ishida, N., Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J. Biochem., 62, 276–277 (1967).
  • 53) Davidson, R. S., Application of fluorescence microscopy to a study of chemical problems. Chem. Soc. Rev., 25, 241–253 (1996).
  • 54) Rao, R., Fiandra, L., Giordana, B., Eguileor, M. D., Congiu, T., Burlini, N., Arciello, S., Corrado, G., and Pennacchio, F., AcMNPV protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochem. Mol. Biol., 34, 1205–1213 (2004).
  • 55) Edwards, M. J., and Jacobs-Lorena, M., Permeability and disruption of the peritrophic matrix and caecal membrane from Aedes aegypti and Anopheles gambiae mosquito larvae. J. Insect Physiol., 46, 1313–1320 (2000).
  • 56) Habibi, J., Backus, E. A., and Huesing, J. E., Effects of phytohemagglutinin on the structure of midgut epithelial cells and localization of its binding sites in western tarnished plant bug, Lygus hesperus Knight. J. Insect Physiol., 46, 611–619 (2000).
  • 57) Zieler, H., Garon, C., Fischer, E., and Shahabuddin, M., A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. J. Exp. Biol., 203, 1599–1611 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.