144
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Identification, Cloning, and Expression of the Scytalidium acidophilum XYL1 Gene Encoding for an Acidophilic Xylanase

, , , , , , & show all
Pages 269-272 | Received 27 Jul 2005, Accepted 10 Sep 2005, Published online: 22 May 2014

  • 1) Collins, T., Gerday, C., and Feller, G., Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev., 29, 3–23 (2005).
  • 2) Henrissat, B., and Bairoch, A., New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 293, 781–788 (1993).
  • 3) Dominguez, R., Souchon, H., Spinelli, S., Dauter, Z., Wilson, K. S., Chauvaux, S., Beguin, P., and Alzari, P. M., A common protein fold and similar active site in two distinct families of beta-glycanases. Nat. Struct. Biol., 2, 569–576 (1995).
  • 4) Torronen, A., Harkki, A., and Rouvinen, J., Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J., 13, 2493–2501 (1994).
  • 5) Subramaniyan, S., and Prema, P., Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol., 22, 33–64 (2002).
  • 6) Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M., From an idea to industry. FEMS Microbiol. Rev., 13, 335–350 (1994).
  • 7) Suurnakki, A., Tenkanen, M., Buchert, J., and Viikari, L., Hemicellulases in the bleaching of chemical pulps. Adv. Biochem. Eng. Biotechnol., 57, 261–287 (1997).
  • 8) Bedford, M. R., and Classen, H. L., Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr., 122, 560–569 (1992).
  • 9) Courtin, C. M., Roelants, A., and Delcour, J. A., Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making. J. Agric. Food Chem., 47, 1870–1877 (1999).
  • 10) Sunna, A., and Antranikian, G., Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol., 17, 39–67 (1997).
  • 11) Wong, K., Tan, L., and Saddler, J., Multilicity of b-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev., 52, 305–317 (1998).
  • 12) Siegler, L., and Carmichael, J. W., A new acidophilic Scytalidium. Can. J. Microbiol., 20, 267–268 (1974).
  • 13) Martin, A. M., and White, M. D., Studies of the production of Scytalidium acidophilum biomass. Appl. Microbiol. Biotechnol., 24, 84–88 (1986).
  • 14) Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., Basic local alignment search tool. J. Mol. Biol., 215, 403–410 (1990).
  • 15) Hessing, J. G., van Rotterdam, C., Verbakel, J. M., Roza, M., Maat, J., van Gorcom, R. F., and van den Hondel, C. A., Isolation and characterization of a 1,4-beta-endoxylanase gene of A. awamori. Curr. Genet., 26, 228–232 (1994).
  • 16) Krengel, U., and Dijkstra, B. W., Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J. Mol. Biol., 263, 70–78 (1996).
  • 17) Kimura, T., Suzuki, H., Furuhashi, H., Aburatani, T., Morimoto, K., Karita, S., Sakka, K., and Ohmiya, K., Molecular cloning, overexpression, and purification of a major xylanase from Aspergillus oryzae. Biosci. Biotechnol. Biochem., 64, 2734–2738 (2000).
  • 18) Miller, G. L., Use of dinitrosalycilic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426–428 (1959).
  • 19) Gebruers, K., Brijs, K., Courtin, C. M., Goesaert, H., Proost, P., Van Dame, J., and Delcour, J. A., Affinity chromatography with immobilised endoxylanases separates TAXI- and XIP-type endoxylanase inhibitors from wheat (Triticum aestivum L.). J. Cereal Sci., 36, 367–375 (2002).
  • 20) Inagaki, K., Nakahira, K., Mukai, K., Tamura, T., and Tanaka, H., Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci. Biotechnol. Biochem., 62, 1061–1067 (1998).
  • 21) Torronen, A., Mach, R. L., Messner, R., Gonzalez, R., Kalkkinen, N., Harkki, A., and Kubicek, C. P., The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology, 10, 1461–1465 (1992).
  • 22) Nielsen, H., Brunak, S., and von Heijne, G., Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng., 12, 3–9 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.