1,046
Views
102
CrossRef citations to date
0
Altmetric
Original Articles

Biochemical and Molecular Analyses of Gibberellin Biosynthesis in Fungi

Pages 583-590 | Published online: 22 May 2014

  • 1) Yabuta, T., and Sumiki, Y., On the crystal of gibberellin, a substance to promote plant growth. J. Agric. Chem. Soc. Japan, 14, 1526 (1938).
  • 2) MacMillan, J., Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regul., 20, 387–442 (2002).
  • 3) Bearder, J. R., MacMillan, J., and Phinney, B. O., Fungal products. Part XIV. Metabolic pathways from ent-kaurenoic acid to the fungal gibberellins in mutant B1-41a of Gibberella fujikuroi. J. Chem. Soc., Perkin Trans.1, 721–726 (1975).
  • 4) Hedden, P., Phillips, A. L., Rojas, M. C., Carrera, E., and Tudzynski, B., Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J. Plant Growth Regul., 20, 319–331 (2002).
  • 5) Tudzynski, B., Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol., 66, 597–611 (2005).
  • 6) Sassa, T., Suzuki, K., and Haruki, E., Isolation and identification of gibberellins A4 and A9 from a fungus Phaeosphaeria sp. Agric. Biol. Chem., 53, 303–304 (1989).
  • 7) Sassa, T., and Suzuki, K., Metabolism of gibberellin A9 to gibberellin A4 in a new gibberellin-producing fungus, Phaeosphaeria sp. L487. Agric. Biol. Chem., 54, 3373–3375 (1990).
  • 8) Kawaide, H., and Sassa, T., Accumulation of gibberellin A1 and metabolism of gibberellin A9 to gibberellin A1 in a fungus Phaeosphaeria sp. culture. Biosci. Biotechnol. Biochem., 57, 1403–1405 (1993).
  • 9) Kenmoku, H., Oozone, T., Sugai, T., and Sassa, T., Mass production of pure gibberellin A1 by Phaeosphaeria sp. L487 and the fungal preparation of [U-13C]gibberellin A1. Biosci. Biotechnol. Biochem., 65, 2095–2097 (2001).
  • 10) Kawaide, H., Sassa, T., and Kamiya, Y., Plant-like biosynthesis of gibberellin A1 in the fungus Phaeosphaeria sp. L487. Phytochemistry, 39, 305–310 (1995).
  • 11) Sassa, T., Kawaide, H., and Takarada, T., Identification of gibberellins A4, A9 and A24 from Phaeosphaeria sp. L487 cultured in a chemically defined medium. Biosci. Biotechnol. Biochem., 58, 438–439 (1994).
  • 12) Seto, H., Sassa, T., Kawaide, H., Shigihara, T., Uzawa, J., and Yoshida, S., Isolation and stereocontrolled synthesis of a 17-hydroxy-16β,17-dihydrogibberellin, GA82. Tetrahedron Lett., 36, 5917–5920 (1995).
  • 13) Duncan, J. D., and West, C. A., Properties of kaurene synthetase from Marah macrocarpus endosperm: evidence for the participation of separate but interacting enzymes. Plant Physiol., 68, 1128–1134 (1981).
  • 14) Fall, R. R., and West, C. A., Purification and properties of kaurene synthetase from Fusarium moniliforme. J. Biol. Chem., 246, 6913–6928 (1971).
  • 15) Kawaide, H., Imai, R., Sassa, T., and Kamiya, Y., ent-Kaurene synthase from the fungus Phaeosphaeria sp. L487: cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis. J. Biol. Chem., 272, 21706–21712 (1997).
  • 16) Tudzynski, B., Kawaide, H., and Kamiya, Y., Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr. Genet., 34, 234–240 (1998).
  • 17) Toyomasu, T., Kawaide, H., Ishizaki, A., Shinoda, S., Otsuka, M., Mitsuhashi, W., and Sassa, T., Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase. Biosci. Biotechnol. Biochem., 64, 660–664 (2000).
  • 18) Oikawa, H., Toyomasu, T., Toshima, H., Ohashi, S., Kawaide, H., Kamiya, Y., Ohtsuka, M., Shinoda, S., Mitsuhashi, W., and Sassa, T., Cloning and functional expression of cDNA encoding aphidicolan-16β-ol synthase: a key enzyme responsible for formation of an unusual diterpene skeleton in biosynthesis of aphidicolin. J. Am. Chem. Soc., 123, 5154–5155 (2001).
  • 19) Wildung, M. R., and Croteau, R., A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem., 271, 9201–9204 (1996).
  • 20) Cho, E.-M., Okada, A., Kenmoku, H., Otomo, K., Toyomasu, T., Mitsuhashi, W., Sassa, T., Yamaji, A., Yabuta, G., Mori, K., Oikawa, H., Toshima, H., Shibuya, N., Nojiri, H., Omori, T., Nishiyama, M., and Yamane, H., Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J., 37, 1–8 (2004).
  • 21) Otomo, K., Kenmoku, H., Oikawa, H., König, W. A., Toshima, H., Mitsuhashi, W., Yamane, H., Sassa, T., and Toyomasu, T., Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J., 39, 886–893 (2004).
  • 22) Nemoto, T., Cho, E.-M., Okada, A., Okada, K., Otomo, K., Kanno, Y., Toyomasu, T., Mitsuhashi, W., Sassa, T., Minami, E., Shibuya, N., Nishiyama, M., Nojiri, H., and Yamane, H., Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett., 571, 182–186 (2004).
  • 23) Otomo, K., Kanno, Y., Motegi, A., Kenmoku, H., Yamane, H., Mitsuhashi, W., Oikawa, H., Toshima, H., Itoh, H., Matsuoka, M., Sassa, T., and Toyomasu, T., Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and orizalexins A–F in rice. Biosci. Biotechnol. Biochem., 68, 2001–2006 (2004).
  • 24) Hopwood, D. A., Genetic contributions to understanding polyketide synthase. Chem. Rev., 97, 2465–2497 (1997).
  • 25) Hohn, T. M., McCormick, S. P., and Desjardins, A. E., Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichoides. Curr. Genet., 24, 291–295 (1993).
  • 26) Tudzynski, B., and Hölter, K., Gibberellin biosynthetic pathway on Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet. Biol., 25, 157–170 (1998).
  • 27) Toyomasu, T., Nakaminami, K., Toshima, H., Mie, T., Watanabe, K., Ito, H., Mitsuhashi, W., Sassa, T., and Oikawa, H., Cloning of a gene cluster responsible for the biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α. Biosci. Biotechnol. Biochem., 68, 146–152 (2004).
  • 28) Young, C., McMillan, L., Telfer, E., and Scott, B., Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol. Microbiol., 39, 754–764 (2001).
  • 29) Brown, D. W., Dyer, R. B., McCormick, S. P., Kendra, D. F., and Plattner, R. D., Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet. Biol., 41, 454–462 (2004).
  • 30) Trapp, S. C., Horn, T. M., McCormick, S., and Jarvis, B. B., Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol. Gen. Genet., 257, 421–432 (1998).
  • 31) Hedden, P., Phinney, B. O., MacMillan, J., and Sponsel, V. M., Metabolism of kaurenoids by Gibberella fujikuroi in the presence of the plant growth retardant, N,N,N-trimethyl-1-methyl-(2′,6′,6′-trimethylcyclohex-2′-en-1′-yl)prop-2-enylammonium iodide. Phytochemistry, 16, 1913–1917 (1977).
  • 32) Kawaide, H., Sassa, T., and Kamiya, Y., Functional analysis of the two interacting cyclase domains in ent-kaurene synthase from the fungus Phaeosphaeria sp. L487 and a comparison with cyclases from higher plants. J. Biol. Chem., 275, 2276–2280 (2000).
  • 33) Peters, R. J., Flory, J. E., Jetter, R., Ravn, M. M., Lee, H.-J., Coates, R. M., and Croteau, R. B., Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the “pseudomature” recombinant enzyme. Biochemistry, 39, 15592–15602 (2000).
  • 34) Frost, R. G., and West, C. A., Properties of kaurene synthetase from Marah macrocarpus. Plant Physiol., 59, 22–29 (1977).
  • 35) Peters, R. J., Carter, O. A., Zang, Y., Matthews, B. W., and Croteau, R. B., Bifunctional abietadiene synthase: mutual structural dependence of the active sites for protonation-initiated and ionization-initiated cyclizations. Biochemistry, 42, 2700–2707 (2003).
  • 36) Smith, M. W., Yamaguchi, S., Ait-Ali, T., and Kamiya, Y., The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiol., 118, 1411–1419 (1998).
  • 37) Iwasaki, T., and Shibaoka, H., Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol., 32, 1007–1014 (1991).
  • 38) Kitahata, N., Saito, S., Miyazawa, Y., Umezawa, T., Shimada, Y., Min, Y. K., Mizutani, M., Hirai, N., Shinozaki, K., Yoshida, S., and Asami, T., Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorg. Med. Chem., 13, 4491–4498 (2005).
  • 39) Rojas, M. C., Urrutia, O., Cruz, C., Gaskin, P., Tudzynski, B., and Hedden, P., Kaurenolides and fujenoic acids are side products of the gibberellin P450-1 monooxygenase in Gibberella fujikuroi. Phytochemistry, 65, 821–830 (2004).
  • 40) Leslie, J. F., Mating populations in Gibberella fujikuroi (Fusarium section Liseola). Phytopathology, 81, 1058–1060 (1991).
  • 41) Leslie, J. F., Genetic status of the Gibberella fujikuroi species complex. Plant Pathol. J., 15, 259–269 (1999).
  • 42) Leslie, J. F., Zeller, K. A., Logrieco, A., Mule, G., Moretti, A., and Ritieni, A., Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl. Environ. Microbiol., 70, 2254–2262 (2004).
  • 43) Desjardins, A. E., Plattner, R. D., and Nelson, P., Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl. Environ. Microbiol., 63, 1838–1842 (1997).
  • 44) Latus-Zietkiewicz, D., Chelkowski, J., Foremska, E., Golinski, P., Grabarkiewicz-Szczesna, J., Kostecki, M., Lew, M., Perkowski, J., Piasecki, M., Wiewiorowska, M., and Szebiotko, K., Biosynthesis of gibberellic acid (GA3) and mycotoxins by F. moniliforme sheldon and other species of Liseola section. Natural Toxins, 4, 228–233 (1996).
  • 45) Malonek, S., Bömke, C., Bornberg-Bauer, E., Rojas, M. C., Hedden, P., Hopkins, P., and Tudzynski, B., Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry, 66, 1296–1311 (2005).
  • 46) Rademacher, W., Occurrence of gibberellins in different species of the fungal genera Sphaceloma and Elsinoe. Phytochemistry, 31, 4155–4157 (1992).
  • 47) Kawanabe, Y., Yamane, H., Murakami, T., Takahashi, H., and Nakamura, T., Identification of gibberellin A3 in mycelia of Neurospora crassa. Agric. Biol. Chem., 47, 1693–1694 (1983).
  • 48) Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W., Ma, L. J., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels, R., Wang, S., Nielsen, C. B., Butler, J., Endrizzi, M., Qui, D., Ianakiev, P., Bell-Pedersen, D., Nelson, M. A., Werner-Washburne, M., Selitrennikoff, C. P., Kinsey, J. A., Braun, E. L., Zelter, A., Schulte, U., Kothe, G. O., Jedd, G., Mewes, W., Staben, C., Marcotte, E., Greenberg, D., Roy, A., Foley, K., Naylor, J., Stange-Thomann, N., Barrett, R., Gnerre, S., Kamal, M., Kamvysselis, M., Mauceli, E., Bielke, C., Rudd, S., Frishman, D., Krystofova, S., Rasmussen, C., Metzenberg, R. L., Perkins, D. D., Kroken, S., Cogoni, C., Macino, G., Catcheside, D., Li, W., Pratt, R. J., Osmani, S. A., DeSouza, C. P., Glass, L., Orbach, M. J., Berglund, J. A., Voelker, R., Yarden, O., Plamann, M., Seiler, S., Dunlap, J., Radford, A., Aramayo, R., Natvig, D. O., Alex, L. A., Mannhaupt, G., Ebbole, D. J., Freitag, M., Paulsen, I., Sachs, M. S., Lander, E. S., Nusbaum, C., and Birren, B., The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–868 (2003).
  • 49) Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., and Yamaguchi, S., The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J. Biol. Chem., 280, 17873–17879 (2005).
  • 50) Kim, T.-W., Hwang, J.-Y., Kim, Y.-S., Joo, S.-H., Chang, C., Lee, J. S., Takatsuto, S., and Kim, S.-K., Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell, 17, 2397–2412 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.