497
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Identification of Genes Affecting Lipid Content Using Transposon Mutagenesis in Saccharomyces cerevisiae

, , , , &
Pages 646-653 | Received 30 Aug 2005, Accepted 05 Nov 2005, Published online: 22 May 2014

  • 1) Carman, G. M., and Henry, S. A., Phospholipid biosynthesis in yeast. Annu. Rev. Biochem., 58, 635–669 (1989).
  • 2) Daum, G., Lees, N. D., Bard, M., and Dickson, R., Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast, 14, 1471–1510 (1998).
  • 3) Carman, G. M., and Henry, S. A., Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res., 38, 361–399 (1999).
  • 4) Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T. M., Rothstein, R., and Sturley, S. L., Sterol esterification in yeast: a two-gene process. Science, 272, 1353–1356 (1996).
  • 5) Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., and Stymne, S., Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc. Natl. Acad. Sci. USA, 97, 6487–6492 (2000).
  • 6) Oelkers, P., Tinkelenberg, A., Erdeniz, N., Cromley, D., Billheimer, J. T., and Sturley, S. L., A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J. Biol. Chem., 275, 15609–15612 (2000).
  • 7) Lardizabal, K. D., Mai, J. T., Wagner, N. W., Wyrick, A., Voelker, T., and Hawkins, D. J., DGAT2 is a new diacylglycerol acyltransferase gene family. J. Biol. Chem., 276, 38862–38869 (2001).
  • 8) Paltauf, F., and Johnston, J. M., Lipid metabolism in inositol-deficient yeast, Saccharomyces carlsbergensis. Biochim. Biophys. Acta, 218, 424–430 (1970).
  • 9) Hayashi, E., Hasegawa, R., and Tomita, T., Accumulation of neutral lipids in Saccharomyces carlsbergensis by myo-inositol deficiency and its metabolism. J. Biol. Chem., 251, 5759–5769 (1976).
  • 10) Johnson, B., Brown, C. M., and Minikin, D. E., The effect of phosphorus limitation upon the lipids of Saccharomyces cerevisiae and Candida utilis grown in continuous culture. J. Gen. Microbiol., 75, 10 (1973).
  • 11) Hunter, K., and Rose, A. H., Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochim. Biophys. Acta, 260, 639–653 (1972).
  • 12) Illingworth, R. F., Rose, A. H., and Beckett, A., Changes in the lipid composition and fine structure of Saccharomyces cerevisiae during ascus formation. J. Bacteriol., 113, 373–386 (1973).
  • 13) Kamisaka, Y., Noda, N., Sakai, T., and Kawasaki, K., Lipid bodies and lipid body formation in an oleaginous fungus, Mortierella ramanniana var. angulispora. Biochim. Biophys. Acta, 1438, 185–198 (1999).
  • 14) Kamisaka, Y., and Noda, N., Intracellular transport of phosphatidic acid and phosphatidylcholine into lipid bodies in an oleaginous fungus, Mortierella ramanniana var. angulispora. J. Biochem., 129, 19–25 (2001).
  • 15) Kamisaka, Y., Noda, N., and Yamaoka, M., Appearance of smaller lipid bodies and protein kinase activation in the lipid body fraction are induced by an increase in the nitrogen source in the Mortierella fungus. J. Biochem., 135, 269–276 (2004).
  • 16) Ito, H., Fukuda, Y., Murata, K., and Kimura, A., Transformation of intact yeast cells treated with alkali cations. J. Bacteriol., 153, 163–168 (1983).
  • 17) Seifert, H. S., Chen, E. Y., So, M., and Heffron, F., Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 83, 735–739 (1986).
  • 18) Burns, N., Grimwade, B., Ross-Macdonald, P. B., Choi, E. Y., Finberg, K., Roeder, G. S., and Snyder, M., Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev., 8, 1087–1105 (1994).
  • 19) Nikawa, J., and Kawabata, M., PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nucl. Acids Res., 26, 860–861 (1998).
  • 20) Kumon, Y., Yokochi, T., Nakahara, T., Yamaoka, M., and Mito, K., Production of long-chain polyunsaturated fatty acids by monoxenic growth of labyrinthulids on oil-dispersed agar medium. Appl. Microbiol. Biotechnol., 60, 275–280 (2002).
  • 21) Kimura, K., Yamaoka, M., and Kamisaka, Y., Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J. Microbiol. Methods, 56, 331–338 (2004).
  • 22) Hosaka, K., and Yamashita, S., Regulatory role of phosphatidate phosphatase in triacylglycerol synthesis of Saccharomyces cerevisiae. Biochim. Biophys. Acta, 796, 110–117 (1984).
  • 23) Bligh, E. G., and Dyer, W. J., A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911–917 (1959).
  • 24) Laurent, B. C., Treitel, M. A., and Carlson, M., Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl. Acad. Sci. USA, 88, 2687–2691 (1991).
  • 25) Yoshimoto, H., and Yamashita, I., The GAM1/SNF2 gene of Saccharomyces cerevisiae encodes a highly charged nuclear protein required for transcription of the STA1 gene. Mol. Gen. Genet., 228, 270–280 (1991).
  • 26) Kodaki, T., Hosaka, K., Nikawa, J., and Yamashita, S., The SNF2/SWI2/GAM1/TYE3/RIC1 gene is involved in the coordinate regulation of phospholipid synthesis in Saccharomyces cerevisiae. J. Biochem., 117, 362–368 (1995).
  • 27) Tanaka, K., Lin, B. K., Wood, D. R., and Tamanoi, F., IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase protein. Proc. Natl. Acad. Sci. USA, 88, 468–472 (1991).
  • 28) Thevelein, J. M., and de Winde, J. H., Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol., 33, 904–918 (1999).
  • 29) Emori, Y., Tsukahara, T., Kawasaki, H., Ishiura, S., Sugita, H., and Suzuki, K., Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol. Cell. Biol., 11, 344–353 (1991).
  • 30) Ratledge, C., Biotechnology of oils and fats. In “Microbial Lipids,” Vol. 2, eds. Ratledge, C., and Wilkinson, S. G., Academic Press, London, pp. 567–668 (1989).
  • 31) Wykoff, D. D., and O’Shea, E. K., Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159, 1491–1499 (2001).
  • 32) Giots, F., Donaton, M. C. V., and Thevelein, J. M., Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol., 47, 1163–1181 (2003).
  • 33) Natsoulis, G., Dollard, C., Winston, F., and Boeke, J. D., The products of the SPT10 and SPT21 genes of Saccharomyces cerevisiae increase the amplitude of transcriptional regulation at a large number of unlinked loci. New Biol., 3, 1249–1259 (1991).
  • 34) Dyer, J. M., Chapital, D. C., Kuan, J. W., Mullen, R. T., and Pepperman, A. B., Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Appl. Microbiol. Biotechnol., 59, 224–230 (2002).
  • 35) Kamiryo, T., and Numa, S., Reduction of the acetyl coenzyme A carboxylase content of Saccharomyces cerevisiae by exogenous fatty acids. FEBS Lett., 38, 29–32 (1973).
  • 36) Black, P. N., and DiRusso, C. C., Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol. Mol. Biol. Rev., 67, 454–472 (2003).
  • 37) Veen, M., and Lang, C., Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 63, 635–646 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.