176
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

FLO11 Is the Primary Factor in Flor Formation Caused by Cell Surface Hydrophobicity in Wild-Type Flor Yeast

, , &
Pages 660-666 | Received 06 Sep 2005, Accepted 22 Nov 2005, Published online: 22 May 2014

  • 1) Ibears, J. I., Lozano, I., Perdigones, F., and Jimenez, J., Dynamics of ‘flor’ yeast populations during the biological ageing of sherry wines. Am. J. Enol. Vitic., 48, 75–79 (1997).
  • 2) Zara, S., Farris, G. A., Budroni, M., and Bakalinsky, A. T., HSP12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae. Yeast, 19, 269–276 (2002).
  • 3) Cantarelli, C., and Martini, A., On the pellicle formation by ‘flor’ yeasts. Antonie van Leeuwenhoek. Suppl. Yeast Sympos., 35, F35–F36 (1969).
  • 4) Iimura, Y., Hara, S., and Otsuka, K., Cell surface hydrophobicity as pellicle formation factor in a film strain of Saccharomyces. Agric. Biol. Chem., 44, 1215–1222 (1980).
  • 5) Iimura, Y., Hara, S., and Otsuka, K., Fatty acids as hydrophobic substance on cell surface of film strain of Saccharomyces. Agric. Biol. Chem., 44, 1223–1229 (1980).
  • 6) Ishigami, M., Nakagawa, Y., Hayakawa, M., and Iimura, Y., FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 237, 425–430 (2004).
  • 7) Zara, S., Bakalinsky, A. T., Zara, G., Pirino, G., Demontis, M. A., and Budroni, M., FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. Appl. Environ. Microbiol., 71, 2934–2939 (2005).
  • 8) Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
  • 9) Rose, M., Winston, F., and Hieter, P., Methods in yeast genetics: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1990).
  • 10) Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D., Designer deletion strain derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14, 115–132 (1998).
  • 11) Yamazaki, T., Kaneko, Y., Harashima, S., and Oshima, Y., Correlation between sulfur dioxide tolerance of a wine yeast strain of Saccharomyces cerevisiae and its chromosome XVI mobility in pulsed-field gradient gel electrophoresis. J. Brew. Soc. Jpn., 91, 640–643 (1995).
  • 12) Wach, A., PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast, 12, 259–265 (1996).
  • 13) Goldstein, A. L., and McCusker, J. H., Three new dominant drug resistance for gene disruption in Saccharomyces cerevisiae. Yeast, 15, 1541–1553 (1999).
  • 14) Misu, K., Fujimura-Kamada, K., Ueda, T., Nakano, A., Katoh, H., and Tanaka, K., Cdc50p, a conserved endosomal membrane protein, controls polarized growth in Saccharomyces cerevisiae. Mol. Biol. Cell, 14, 730–747 (2003).
  • 15) Gietz, R. D., and Woods, R. A., High efficiency transformation with lithium acetate. In “Molecular Genetics of Yeast, A Practical Approach,” ed. Johnson, J. R., IRL Press, Oxford, pp. 121–134 (1994).
  • 16) Ito, H., Fukuda, Y., Murata, K., and Kimura, A., Transformation of intact yeast cells treated with alkali cations. J. Bacteriol., 153, 163–168 (1983).
  • 17) Hereford, L., Fahrner, K., Woodford, J., Jr., Rosbash, M., and Kaback, D. B., Isolation of yeast histone genes H2A and H2B. Cell, 18, 1261–1271 (1979).
  • 18) Elder, R. T., Loh, E. Y., and Davis, R. W., RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA, 80, 2432–2436 (1983).
  • 19) Park, S. H., Kho, S. S., Chun, J. H., Hwang, H. J., and Kang, H. S., Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol., 19, 2044–2050 (1999).
  • 20) Vyas, V. K., Kuchin, S., and Carlson, M., Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics, 158, 563–572 (2001).
  • 21) Zhou, H., and Winston, F., NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet., 2, 5 (2001).
  • 22) Lo, W. S., and Dranginis, A. M., FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J. Bacteriol., 178, 7144–7151 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.