413
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Improved Production of Enzymes, Which Are Expressed under the Pho Regulon Promoter, in the rmf Gene (encoding ribosome modulation factor) Disruptant of Escherichia coli

, , &
Pages 949-957 | Received 07 Oct 2005, Accepted 07 Dec 2005, Published online: 22 May 2014

  • 1) Wada, A., Yamazaki, Y., Fujita, N., and Ishihama, A., Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc. Natl. Acad. Sci. USA, 87, 2657–2661 (1990).
  • 2) Yamagishi, M., Matsushima, H., Wada, A., Sakagami, M., Fujita, N., and Ishihama, A., Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J., 12, 625–630 (1993).
  • 3) Wada, A., Igarashi, K., Yoshimura, S., Aimoto, S., and Ishihama, A., Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli. Biochem. Biophys. Res. Commun., 214, 410–417 (1995).
  • 4) Wada, A., Growth phase coupled modulation of Escherichia coli ribosomes. Genes to Cells, 3, 203–208 (1998).
  • 5) Ishihama, A., Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes to Cells, 4, 135–143 (1999).
  • 6) Yoshida, H., Maki, Y., Kato, H., Fujisawa, H., Izutsu, K., Wada, C., and Wada, A., The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli. J. Biochem. (Tokyo), 132, 983–989 (2002).
  • 7) El-Sharoud, W. M., Ribosome disruption for preservation: concepts and reservations. Sci. Prog., 87, 137–152 (2004).
  • 8) Yoshida, H., Yamamoto, H., Uchiumi, T., and Wada, A., RMF inactivates ribosomes by covering the peptidyl transferase center and entrance of peptide exit tunnel. Genes to Cells, 9, 271–278 (2004).
  • 9) Imaizumi, A., Takikawa, R., Koseki, C., Usuda, Y., Yasueda, H., Kojima, H., Matsui, K., and Sugimoto, S., Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J. Biotechnol., 117, 111–118 (2005).
  • 10) Chou, C. H., Bennett, G. N., and San, K. Y., Genetic manipulation of stationary-phase genes to enhance recombinant protein production in Escherichia coli. Biotechnol. Bioeng., 50, 636–642 (1996).
  • 11) Thaller, M. C., Berlutti, F., Schippa, S., Lombardi, G., and Rossolini, G. M., Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology, 140, 1341–1350 (1994).
  • 12) Datsenko, K. A., and Wanner, B. L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA, 97, 6640–6645 (2000).
  • 13) Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
  • 14) Baldi, P., and Long, A. D., A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics, 17, 509–519 (2001).
  • 15) Hung, S., Baldi, P., and Hatfield, G. W., Global gene expression profiling in Escherichia coli K12: the effects of leucine responsive regulatory protein. J. Biol. Chem., 277, 40309–40323 (2002).
  • 16) Kaderbhai, M. A., Ugochukwu, C. C., Kelly, S. L., and Lamb, D. C., Export of cytochrome P450 105D1 to the periplasmic space of Escherichia coli. Appl. Environ. Microbiol., 67, 2136–2138 (2001).
  • 17) Mihara, Y., Utagawa, T., Yamada, H., and Asano, Y., Phosphorylation of nucleosides by the mutated acid phosphatase from Morganella morganii. Appl. Environ. Microbiol., 66, 2811–2816 (2000).
  • 18) Miller, J. H., “Experiments in Molecular Genetics,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1972).
  • 19) Fiske, C. H., and Subbarow, Y., The colorimetric determination of phosphorus. J. Biol. Chem., 66, 375–400 (1925).
  • 20) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 21) Wanner, B. L., Phosphorus assimilation and control of the phosphate regulon. In “Escherichia coli and Salmonella: Cellular and Molecular Biology” 2nd edition, ed. Neidhardt, F. C., ASM Press, Washington, DC, pp. 1357–1381 (1996).
  • 22) Makino, K., Amemura, M., Kim, S. K., Nakata, A., and Shinagawa, H., Regulation of the phosphate regulon of Escherichia coli: activation of pstS transcription by PhoB protein in vitro. J. Mol. Biol., 203, 85–95 (1988).
  • 23) Pasternak, N. T., Yagil, E., and Spira, B., A differential effect of σS on the expression of the PHO regulon gene in Escherichia coli. Microbiology, 100, 2985–2992 (2004).
  • 24) Izutsu, K., Wada, A., and Wada, C., Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp. Genes to Cells, 6, 665–676 (2001).
  • 25) Cashel, M., Gentry, D. R., Hernadez, V. J., and Vinella, D., The stringent response. In “Escherichia coli and Salmonella: Cellular and Molecular Biology” 2nd edition, ed. Neidhardt, F. C., ASM Press, Washington, DC, pp. 1458–1496 (1996).
  • 26) Bremer, H., and Dennis, P., Modulation of chemical composition and other parameters of the cell by growth rate. In “Escherichia coli and Salmonella: Cellular and Molecular biology” 2nd edition, ed. Neidhardt, F. C., ASM Press, Washington, DC, pp. 1553–1569 (1996).
  • 27) Maaløe, O., An analysis of bacterial growth. Dev. Biol. Suppl., 3, 33–58 (1969).
  • 28) Gourse, R. L., Gaal, T., Bartlett, M. S., Appleman, J. A., and Ross, W., rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol., 50, 645–677 (1996).
  • 29) Condon, C., Liveris, D., Squires, C. I., Schwartz, I., and Squires, C. L., rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn disruption. J. Bacteriol., 177, 4152–4156 (1995).
  • 30) Keener, J., and Nomura, M., Regulation of ribosome synthesis. In “Escherichia coli and Salmonella: Cellular and Molecular Biology” 2nd edition, ed. Neidhardt, F. C., ASM Press, Washington, DC, pp. 1417–1431 (1996).
  • 31) Dean, D., and Nomura, M., Feedback regulation of ribosomal protein gene expression in Escherichia coli. Proc. Natl. Acad. Sci. USA, 77, 3590–3594 (1980).
  • 32) Nomura, M., Yates, J. L., Dean, D., and Post, L. E., Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein mRNA. Proc. Natl. Acad. Sci. USA, 77, 7084–7088 (1980).
  • 33) Nomura, M., Gourse, R., and Baughman, G., Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem., 53, 75–117 (1984).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.