260
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Inhibitory Activity of Linoleic Acid Isolated from Proso and Japanese Millet toward Histone Deacetylase

, , , &
Pages 2061-2064 | Received 02 Feb 2007, Accepted 21 Apr 2007, Published online: 22 May 2014

  • 1) Monneret, C., Histone deacetylase inhibitors. Eur. J. Med. Chem., 40, 1–13 (2005).
  • 2) McLaughlin, F., and Thangue, N. B. L., Histone deacetylase inhibitors open new doors in cancer therapy. Biochem. Pharmacol., 68, 1139–1144 (2004).
  • 3) Boffa, L. C., Vidali, G., Mann, R. S., and Allfrey, V. G., Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J. Biol. Chem., 253, 3364–3366 (1978).
  • 4) Hassig, C. A., Tong, J. K., and Schreiber, S. L., Fiber-derived butyrate and the preventation of colon cancer. Chem. Biol., 4, 783–789 (1997).
  • 5) Hill, M. J., Introduction: dietary fiber, butyrate and colorectal cancer. Eur. J. Cancer Prev., 4, 341–343 (1995).
  • 6) Medina, V., Edmonds, B., Young, G. P., James, R., Appleton, S., and Zalewski, P. D., Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res., 57, 3697–3707 (1997).
  • 7) Davie, J. R., Inhibition of histone deacetylase activity by butyrate. J. Nutr., 133 (Suppl), 2485S–2493S (2003).
  • 8) Nishizawa, N., and Fudamoto, Y., The elevation of plasma concentration of high-density lipoprotein cholesterol in mice fed with protein from proso millet. Biosci. Biotechnol. Biochem., 59, 333–335 (1995).
  • 9) Nishizawa, N., Sato, D., Ito, Y., Nagasawa, T., Hatakeyama, Y., Choi, M.-R., Choi, Y.-Y., and Wei, Y. M., Effects of dietary protein of proso millet on liver injury induced by D-galactosamine in rats. Biosci. Biotechnol. Biochem., 66, 92–96 (2002).
  • 10) Choi, Y.-Y., Osada, K., Ito, Y., Nagasawa, T., Choi, M.-R., and Nishizawa, N., Effects of dietary protein of Korean foxtail millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Biosci. Biotechnol. Biochem., 69, 31–37 (2005).
  • 11) Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., Breslow, R., and Pavletich, N. P., Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401, 188–193 (1999).
  • 12) Richon, V. M., Emiliani, S., Verdin, E., Webb, Y., Breslow, R., Rifkind, R. A., and Marks, P. A., A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA, 95, 3003–3007 (1998).
  • 13) Vanommeslaeghe, K., Loverix, S., Geerlings, P., and Tourwé, D., DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors. Bioorg. Med. Chem., 13, 6070–6082 (2005).
  • 14) Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., and Klein, P. S., Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 276, 36734–36741 (2001).
  • 15) Koyama, Y., Adachi, M., Sekiya, M., Takekawa, M., and Imai, K., Histone deacetylase inhibitors suppress IL-2-mediated gene expression prior to induction of apoptosis. Blood, 96, 1490–1495 (2000).
  • 16) Frønsdal, K., and Saatcioglu, F., Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. Prostate, 62, 299–306 (2005).
  • 17) Jiang, W. G., Bryce, R. P., and Horrobin, D. F., Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications. Crit. Rev. Oncol. Hematol., 27, 179–209 (1998).
  • 18) Yonezawa, Y., Hada, T., Uryu, K., Tsuzuki, T., Eitsuka, T., Miyazawa, T., Murakami-Nakai, C., Yoshida, H., and Mizushina, Y., Inhibitory effect of conjugated eicosapentaenoic acid on mammalian DNA polymerase and topoisomerase activities and human cancer cell proliferation. Biochem. Pharmacol., 70, 453–460 (2005).
  • 19) Menendez, J. A., and Lupu, R., Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil’s monounsaturated fatty acid oleic acid (18:1n-9). Curr. Pharm. Biotechnol., 7, 495–502 (2006).
  • 20) Das, U. N., Tumoricidal and anti-angiogenic actions of gamma-linoleic acid and its derivatives. Curr. Pharm. Biotechnol., 7, 457–466 (2006).
  • 21) Trombetta, A., Maggiora, M., Martinasso, G., Cotogni, P., Canuto, R. A., and Muzio, G., Arachidonic and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs. Chem. Biol. Interact., 165, 239–250 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.