305
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Induction of Egr-1 Is Associated with Anti-Metastatic and Anti-Invasive Ability of β-Lapachone in Human Hepatocarcinoma Cells

, , , , &
Pages 2169-2176 | Received 21 Feb 2007, Accepted 07 Jun 2007, Published online: 22 May 2014

  • 1) Baek, S. J., Kim, J. S., Moore, S. M., Lee, S. H., Martinez, J., and Eling, T. E., Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol. Pharmacol., 67, 356–364 (2005).
  • 2) Shingu, T., and Bornstein, P., Overlapping Egr-1 and Sp1 sites function in the regulation of transcription of the mouse thrombospondin 1 gene. J. Biol. Chem., 269, 32551–32557 (1994).
  • 3) Liu, C., Yao, J., Mercola, D., and Adamson, E., The transcription factor EGR-1 directly transactivates the fibronectin gene and enhances attachment of human glioblastoma cell line U251. J. Biol. Chem., 275, 20315–20323 (2000).
  • 4) Castle, V. P., Dixit, V. M., and Polverini, P. J., Thrombospondin-1 suppresses tumorigenesis and angiogenesis in serum- and anchorage-independent NIH 3T3 cells. Lab. Invest., 77, 51–61 (1997).
  • 5) Weinstat-Saslow, D. L., Zabrenetzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., and Steeg, P. S., Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res., 54, 6504–6511 (1994).
  • 6) Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L., and Bouck, N., Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med., 6, 41–48 (2000).
  • 7) de Fraipont, F., Nicholson, A. C., Feige, J. J., and Van Meir, E. G., Thrombospondins and tumor angiogenesis. Trends Mol. Med., 7, 401–407 (2001).
  • 8) Lawler, J., Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell. Mol. Med., 6, 1–12 (2002).
  • 9) Yao, L., Zhao, Y. L., Itoh, S., Wada, S., Yue, L., and Furuta, I., Thrombospondin-1 expression in oral squamous cell carcinomas: correlations with tumor vascularity, clinicopathological features and survival. Oral Oncol., 36, 539–544 (2000).
  • 10) Woodhouse, E. C., Chuaqui, R. F., and Liotta, L. A., General mechanisms of metastasis. Cancer, 80, 1529–1537 (1997).
  • 11) Battle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Braulidia, J., and Herreros, A. G., The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat. Cell Biol., 2, 84–89 (2000).
  • 12) Yokoyama, K., Kamata, N., Hayashi, E., Hoteiya, T., Ueda, N., Fujimoto, R., and Ngayama, M., Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol., 37, 65–71 (2001).
  • 13) Jiao, K., Miyazaki, K., and Kitajima, Y., Inverse correlation of E-cadherin and Snail expression in hepatocellular cell lines in vitro and in vivo. Br. J. Cancer, 86, 98–101 (2002).
  • 14) Poser, I., Dominguez, D., Herreros, A. G., Varnai, A., Buettner, R., and Bosserhoff, A., Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repression Snail. J. Biol. Chem., 276, 24661–24666 (2001).
  • 15) Huber, M. A., Kraut, N., and Beug, H., Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 17, 548–558 (2005).
  • 16) Nieto, M. A., The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell. Biol., 3, 155–166 (2002).
  • 17) Luo, J., Lubaroff, D. M., and Hendrix, M. J., Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res., 59, 3552–3556 (1999).
  • 18) Oka, H., Shiozaki, H., Kobayashi, K., Inoue, M., Tahara, H., Kobayashi, T., Takatsuka, Y., Matsuyoshi, N., Hirano, S., and Takeichi, M., Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res., 53, 1696–1701 (1993).
  • 19) Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M., Davidson, N. K., and Baylin, S. B., E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res., 55, 5195–5199 (1995).
  • 20) Schaffner-Sabba, K., Schmidt-Ruppin, K. H., Wehrli, W., Schuerch, A. R., and Wasley, J. W., β-Lapachone: synthesis of derivatives and activities in tumor models. J. Med. Chem., 27, 990–994 (1984).
  • 21) Lopes, J. N., Cruz, F. S., Docampo, R., Vasconcellos, M. S., Sampaio, M. C., and Pinto, A. V., In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 12-naphthoquinone derivatives against Trypanosoma cruzi. Ann. Trop. Med. Parasitol., 72, 523–531 (1978).
  • 22) Guiraud, P., Steiman, R., Campos-Takaki, G. M., Seigle-Murandi, F., and Simeon de Buochberg, M., Comparison of antibacterial and antifungal activities of lapachol and β-lapachone. Planta Med., 60, 373–374 (1994).
  • 23) Cruz, F. S., Docampo, R., and Boveris, A., Generation of superoxide anions and hydrogen peroxide from β-lapachone in bacteria. Antimicrob. Agents Chemother., 14, 630–633 (1978).
  • 24) Docampo, R., Cruz, F. S., Boveris, A., Muniz, R. P., and Esquivel, D. M., β-Lapachone enhancement of lipid peroxidation and superoxide anion and hydrogen peroxide formation by sarcoma 180 ascites tumor cells. Biochem. Pharmacol., 28, 723–728 (1979).
  • 25) Planchon, S. M., Pink, J. J., Tagliarino, C., Bornmann, W. G., Varnes, M. E., and Boothman, D. A., β-Lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3. Exp. Cell Res., 267, 95–106 (2001).
  • 26) Wuerzberger, S. M., Pink, J. J., Planchon, S. M., Byers, K. L., Bornmann, W. G., and Boothman, D. A., Induction of apoptosis in MCF-7:WS8 breast cancer cells by β-lapachone. Cancer Res., 58, 1876–1885 (1998).
  • 27) Huang, L., and Pardee, A. B., β-Lapachone induces cell cycle arrest and apoptosis in human colon. cancer cells. Mol. Med., 5, 711–720 (1999).
  • 28) Don, M. J., Chang, Y. H., Chen, K. K., Ho, L. K., and Chau, Y. P., Induction of CDK inhibitors (p21 (WAF1) and p27 (Kip1)) and Bak in the β-lapachone-induced apoptosis of human prostate cancer cells. Mol. Pharmacol., 59, 784–794 (2001).
  • 29) Li, Y., Sun, X., LaMont, J. T., Pardee, A. B., and Li, C. J., Selective killing of cancer cells by β-lapachone: direct checkpoint activation as a strategy against cancer. Proc. Natl. Acad. Sci. USA, 100, 2674–2678 (2003).
  • 30) Choi, Y. H., Kim, M. J., Lee, S. Y., Lee, Y. N., Chi, G. Y., Eom, H. S., Kim, N. D., and Choi, B. T., Phosphorylation of p53, induction of Bax and activation of caspases during β-lapachone-mediated apoptosis in human prostate epithelial cells. Int. J. Oncol., 21, 1293–1299 (2002).
  • 31) Choi, Y. H., Kang, H. S., and Yoo, M. A., Suppression of human prostate cancer cell growth by β-lapachone via inhibition of pRB phosphorylation and induction of Cdk inhibitor p21. J. Biochem. Mol. Biol., 36, 223–229 (2002).
  • 32) Choi, B. T., Cheong, J., and Choi, Y. H., β-Lapachone-induced apoptosis is associated with activation of caspase-3 and inactivation of NF-κB in human colon cancer HCT-116 cells. Anticancer Drugs, 14, 845–850 (2003).
  • 33) Woo, H. J., and Choi, Y. H., Growth inhibition of A549 human lung carcinoma cells by β-lapachone through induction of apoptosis and inhibition of telomerase activity. Int. J. Oncol., 26, 1017–1023 (2005).
  • 34) Bandyopadhyay, S., Wang, Y., Zhan, R., Pai, S. K., Watabe, M., Iiizumi, M., Furuta, E., Mohinta, S., Liu, W., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Takano, Y., Saito, K., Commes, T., Piquemal, D., Hai, T., and Watabe, K., The tumor metastasis suppressor gene Erg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res., 66, 11983–11990 (2006).
  • 35) Moon, Y., Bottone, F. G., Jr., McEntee, M. F., and Eling, T. E., Suppression of tumor cell invasion by cyclooxygenase inhibitors is mediated by thrombospondin-1 via the early growth response gene. Mol. Cancer Ther., 4, 1551–1558 (2005).
  • 36) Miyoshi, A., Kitajima, Y., Kido, S., Shimonishi, T., Matsuyama, S., Kitahara, K., and Miyazaki, K., Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br. J. Cancer, 92, 252–258 (2005).
  • 37) Zhang, J. F., Zhang, Y. P., Hao, F. Y., Zhang, C. X., Li, Y. J., and Ji, X. R., DNA ploidy analysis and expression of MMP-9, TIMP-2, and E-cadherin in gastric carcinoma. World J. Gastroenterol., 11, 5592–5600 (2005).
  • 38) Howard, E. M., Lau, S. K., Lyles, R. H., Birdsong, G. G., Tadros, T. S., Umbreit, J. N., and Kochhar, R., Correlation and expression of p53, HER-2, vascular endothelial growth factor (VEGF), and E-cadherin in a high-risk breast-cancer population. Int. J. Clin. Oncol., 9, 154–160 (2004).
  • 39) Grotegut, S., von Schweinitz, D., Christofori, G., and Lehembre, F., Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J., 25, 3534–3545 (2006).
  • 40) Barrallo-Gimeno, A., and Nieto, M. A., The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 132, 3151–3161 (2005).
  • 41) Peiro, S., Escriva, M., Puig, I., Barbera, M. J., Dave, N., Herranz, N., Larriba, M. J., Takkunen, M., Franci, C., Munoz, A., Virtanen, I., Baulida, J., and Garcia de Herreros, A., Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res., 34, 2077–2084 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.