322
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Novel Reporter Gene Expression Systems for Monitoring Activation of the Aspergillus nidulans HOG Pathway

, , , , , , , , , & show all
Pages 1724-1730 | Received 07 Mar 2007, Accepted 12 Apr 2007, Published online: 22 May 2014

  • 1) Hohmann, S., Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev., 66, 300–372 (2002).
  • 2) Maeda, T., Takekawa, M., and Saito, H., Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science, 269, 554–558 (1995).
  • 3) Posas, F., and Saito, H., Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science, 276, 1702–1705 (1997).
  • 4) Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C., and Saito, H., Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 ‘two-component’ osmosensor. Cell, 86, 865–875 (1996).
  • 5) Tatebayashi, K., Yamamoto, K., Tanaka, K., Tomida, T., Maruoka, T., Kasukawa, E., and Saito, H., Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J., 25, 3033–3044 (2006).
  • 6) Akhtar, N., Blomberg, A., and Adler, L., Osmoregulation and protein expression in a pbs2delta mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress. FEBS Lett., 403, 173–180 (1997).
  • 7) Han, K. H., and Prade, R. A., Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol. Microbiol., 43, 1065–1078 (2002).
  • 8) Kawasaki, L., Sánchez, O., Shiozaki, K., and Aguirre, J., SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol., 45, 1153–1163 (2002).
  • 9) Furukawa, K., Katsuno, Y., Urao, T., Yabe, T., Yamada-Okabe, T., Yamada-Okabe, H., Yamagata, Y., Abe, K., and Nakajima, T., Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl. Environ. Microbiol., 68, 5304–5310 (2002).
  • 10) Furukawa, K., Hoshi, Y., Maeda, T., Nakajima, T., and Abe, K., Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol., 56, 1246–1261 (2005).
  • 11) Hagiwara, D., Matsubayashi, Y., Marui, J., Furukawa, K., Yamashino, T., Kanamaru, K., Kato, M., Abe, K., Kobayashi, T., and Mizuno, T., Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Biosci. Biotechnol. Biochem., 71, 844–847 (2007).
  • 12) Zhang, Y., Lamm, R., Pillonel, C., Lam, S., and Xu, J. R., Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl. Environ. Microbiol., 68, 532–538 (2002).
  • 13) Fujimura, M., Ochiai, N., Oshima, M., Motoyama, T., Ichiishi, A., Usami, R., Horikoshi, K., and Yamaguchi, I., Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci. Biotechnol. Biochem., 67, 186–191 (2003).
  • 14) Noguchi, R., Banno, S., Ichikawa, R., Fukumori, F., Ichiishi, A., Kimura, M., Yamaguchi, I., and Fujimura, M., Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet. Biol., 44, 208–218 (2007).
  • 15) Banno, S., Noguchi, R., Yamashita, K., Fukumori, F., Kimura, M., Yamaguchi, I., and Fujimura, M., Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr. Genet., 51, 197–208 (2007).
  • 16) Motoyama, T., Ohira, T., Kadokura, K., Ichiishi, A., Fujimura, M., Yamaguchi, I., and Kudo, T., An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr. Genet., 47, 298–306 (2005).
  • 17) Yoshimi, A., Kojima, K., Takano, Y., and Tanaka, C., Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot. Cell, 4, 1820–1828 (2005).
  • 18) Izumitsu, K., Yoshimi, A., and Tanaka, C., Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Eukaryot. Cell, 6, 171–181 (2007).
  • 19) Hagiwara, D., Asano, Y., Marui, J., Furukawa, K., Kanamaru, K., Kato, M., Abe, K., Kobayashi, T., Yamashino, T., and Mizuno, T., The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Biosci. Biotechnol. Biochem., 71, 1003–1014 (2007).
  • 20) Calera, J. A., Zhao, X. J., and Calderone, R., Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect. Immun., 68, 518–525 (2000).
  • 21) Gehmann, K., Nyfeler, R., Leadbeater, A. J., Nevill, D., and Sozzi, D., CGA 173506: a new phenylpyrrole fungicide for broad-spectrum disease control. Brighton Crop Prot. Conf. Pests Dis., 2, 399–406 (1990).
  • 22) Ochiai, N., Fujimura, M., Motoyama, T., Ichiishi, A., Usami, R., Horikoshi, K., and Yamaguchi, I., Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag. Sci., 57, 437–442 (2001).
  • 23) Nakajima, K., Kunihiro, S., Sano, M., Zhang, Y., Eto, S., Chang, Y. C., Suzuki, T., Jigami, Y., and Machida, M., Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Curr. Genet., 37, 322–327 (2000).
  • 24) Gomi, K., Iimura, Y., and Hara, S., Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric. Biol. Chem., 51, 2549–2555 (1987).
  • 25) Robinett, C. C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A. S., In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol., 135, 1685–1700 (1996).
  • 26) Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., and Okuno, T., Fungicide activity through activation of a fungal signalling pathway. Mol. Microbiol., 53, 1785–1796 (2004).
  • 27) Fillinger, S., Ruijter, G., Tamas, M. J., Visser, J., Thevelein, J. M., and d’Enfert, C., Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Mol. Microbiol., 39, 145–157 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.