1,615
Views
319
CrossRef citations to date
0
Altmetric
Original Articles

Molecular and Genetic Studies of Fusarium Trichothecene Biosynthesis: Pathways, Genes, and Evolution

, , , &
Pages 2105-2123 | Published online: 22 May 2014

  • 1) Bennett, J. W., and Klich, M., Mycotoxins. Clin. Microbiol. Rev., 16, 497–516 (2003).
  • 2) Ueno, Y., Hosoya, M., and Ishikawa, Y., Inhibitory effects of mycotoxins on the protein synthesis in rabbit reticulocytes. J. Biochem., 66, 419–422 (1969).
  • 3) Yoshizawa, T., Human and animal intoxication episodes caused by trichothecene mycotoxins. Mycotoxins, 53, 113–118 (2003).
  • 4) Pestka, J. J., and Smolinski, A. T., Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev., 8, 39–69 (2005).
  • 5) Grove, J. F., The trichothecenes and their biosynthesis. Fortschr. Chem. Org. Naturst., 88, 63–130 (2007).
  • 6) Ueno, Y., Toxicological features of T-2 toxin and related trichothecenes. Fundam. Appl. Toxicol., 4, S124–S132 (1984).
  • 7) Ueno, Y., The toxicology of mycotoxins. CRC Crit. Rev. Toxicol., 14, 99–132 (1985).
  • 8) Brasel, T. L., Douglas, D. R., Wilson, S. C., and Straus, D. C., Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Appl. Environ. Microbiol., 71, 114–122 (2005).
  • 9) Shifrin, V. I., and Anderson, P., Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem., 274, 13985–13992 (1999).
  • 10) Moon, Y., and Pestka, J. J., Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. J. Nutr. Biochem., 14, 717–726 (2003).
  • 11) Pestka, J. J., Zhou, H. R., Moon, Y., and Chung, Y. J., Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol. Lett., 153, 61–73 (2004).
  • 12) Nishiuchi, T., Masuda, D., Nakashita, H., Ichimura, K., Shinozaki, K., Yoshida, S., Kimura, M., Yamaguchi, I., and Yamaguchi, K., Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Mol. Plant Microbe Interact., 19, 512–520 (2006).
  • 13) Goswami, R. S., and Kistler, H. C., Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol., 5, 515–525 (2004).
  • 14) Wolf, J. C., and Mirocha, C. J., Regulation of sexual reproduction in Gibberella zeae (Fusarium roxeum “graminearum”) by F-2 (Zearalenone). Can. J. Microbiol., 19, 725–734 (1973).
  • 15) Takahashi-Ando, N., Kimura, M., Kakeya, H., Osada, H., and Yamaguchi, I., A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochem. J., 365, 1–6 (2002).
  • 16) Kakeya, H., Takahashi-Ando, N., Kimura, M., Onose, R., Yamaguchi, I., and Osada, H., Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Biosci. Biotechnol. Biochem., 66, 2723–2726 (2002).
  • 17) Takahashi-Ando, N., Ohsato, S., Shibata, T., Hamamoto, H., Yamaguchi, I., and Kimura, M., Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea. Appl. Environ. Microbiol., 70, 3239–3245 (2004).
  • 18) Takahashi-Ando, N., Tokai, T., Hamamoto, H., Yamaguchi, I., and Kimura, M., Efficient decontamination of zearalenone, the mycotoxin of cereal pathogen, by transgenic yeasts through the expression of a synthetic lactonohydrolase gene. Appl. Microbiol. Biotechnol., 67, 838–844 (2005).
  • 19) Higa-Nishiyama, A., Takahashi-Ando, N., Shimizu, T., Kudo, T., Yamaguchi, I., and Kimura, M., A model transgenic cereal plant with detoxification activity for the estrogenic mycotoxin zearalenone. Transgenic Res., 14, 713–717 (2005).
  • 20) Igawa, T., Takahashi-Ando, N., Ochiai, N., Ohsato, S., Shimizu, T., Kudo, T., Yamaguchi, I., and Kimura, M., Reduced contamination by the Fusarium mycotoxin zearalenone in maize kernels through genetic modification with a detoxification gene. Appl. Environ. Microbiol., 73, 1622–1629 (2007).
  • 21) Fuchs, E., Binder, E. M., Heidler, D., and Krska, R., Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam., 19, 379–386 (2002).
  • 22) Proctor, R. H., Hohn, T. M., and McCormick, S. P., Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant Microbe Interact., 8, 593–601 (1995).
  • 23) Desjardins, A. E., Proctor, R. H., Bai, G., McCormick, S. P., Shaner, G., Buechley, G., and Hohn, T. M., Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant Microbe Interact., 9, 775–781 (1996).
  • 24) Ohsato, S., Ochiai-Fukuda, T., Nishiuchi, T., Takahashi-Ando, N., Koizumi, S., Hamamoto, H., Kudo, T., Yamaguchi, I., and Kimura, M., Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Rep., 26, 531–538 (2007).
  • 25) Okubara, P. A., Blechl, A. E., McCormick, S. P., Alexander, N. J., Dill-Macky, R., and Hohn, T. M., Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor. Appl. Genet., 106, 74–83 (2002).
  • 26) Manoharan, M., Dahleen, L. S., Hohn, T. M., Neate, S. M., Yu, X.-H., Alexander, N. J., McCormick, S. P., Bregitzer, P., Schwarz, P. B., and Horsley, R. D., Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Sci., 171, 699–706 (2006).
  • 27) Achilladelis, B., and Hanson, J. R., Studies in terpenoid biosynthesis–I. The biosynthesis of metabolites of Tricothecium roseum. Phytochemistry, 7, 589–594 (1968).
  • 28) Poulter, C. D., and Rilling, H. C., The prenyl transfer reaction. Enzymatic and mechanistic studies of 1′-4 coupling reaction in the terpene biosynthetic pathway. Acc. Chem. Res., 11, 307–313 (1978).
  • 29) Grünler, J., Ericsson, J., and Dallner, G., Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta, 1212, 259–277 (1994).
  • 30) Mohr, P., Tamm, C., Zürcher, W., and Zehnder, M., 48. Sambucinol and sambucoin, two new metabolites of Fusarium sambucinum possessing modified trichothecene structures. Helv. Chim. Acta, 67, 406–412 (1984).
  • 31) Zamir, L. O., Devor, K. A., Nadeau, Y., and Sauriol, F., Structure determination and biosynthesis of a novel metabolite of Fusarium culmorum, apotrichodiol. J. Biol. Chem., 262, 15354–15358 (1987).
  • 32) Nozoe, S., and Machida, Y., Structure of trichodiene. Tetrahedron Lett., 11, 2671–2674 (1970).
  • 33) Birch, A. J., Richards, R. W., Smith, H., Harris, A., and Whalley, W. B., Studies in relation to biosynthesis–XXI. Rosenonolactone and gibberellic acid. Tetrahedron, 7, 241–251 (1959).
  • 34) Fishman, J., Jones, E. R. H., Lowe, G., and Whiting, M. C., The structure and biogenesis of trichothecin. Proc. Chem. Soc., 127–128 (1959).
  • 35) Achilladelis, B., Adams, P. M., and Hanson, J. R., Studies in terpenoid biosynthesis. Part VIII. The formation of the trichothecane nucleus. J. Chem. Soc. Perkin Trans. 1, 1425–1428 (1972).
  • 36) Machida, Y., and Nozoe, S., Biosynthesis of trichothecin and related compounds. Tetrahedron, 28, 5113–5117 (1972).
  • 37) Dockerill, B., Hanson, J. R., and Siverns, M., The biosynthesis of trichothecin from acetate- [1,2- 13C2]. Phytochemistry, 17, 427–430 (1978).
  • 38) Machida, Y., and Nozoe, S., Biosynthesis of trichothecin and related compounds. Tetrahedron Lett., 13, 1969–1971 (1972).
  • 39) Evans, R., and Hanson, J. R., Studies in terpenoid biosynthesis. Part XIV. Formation of the sesquiterpene trichodiene. J. Chem. Soc. Perkin Trans. 1, 326–329 (1976).
  • 40) Arigoni, D., Stereochemical aspects of sesquiterpene biosynthesis. Pure Appl. Chem., 41, 219–245 (1975).
  • 41) Cane, D. E., The stereochemistry of allylic pyrophosphate metabolism. Tetrahedron, 36, 1109–1159 (1980).
  • 42) Cane, D. E., Swanson, S., and Murthy, P. P. N., Trichodiene biosynthesis and the enzymatic cyclization of farnesyl pyrophosphate. J. Am. Chem. Soc., 103, 2136–2138 (1981).
  • 43) Cane, D. E., Ha, H.-J., Pargellis, C., Waldmeier, F., Swanson, S., and Murthy, P. P. N., Trichodiene biosynthesis and the stereochemistry of the enzymatic cyclization of farnesyl pyrophosphate. Bioorg. Chem., 13, 246–265 (1985).
  • 44) Cane, D. E., and Ha, H. J., Trichodiene biosynthesis and the role of nerolidyl pyrophosphate in the enzymatic cyclization of farnesyl pyrophosphate. J. Am. Chem. Soc., 110, 6865–6870 (1988).
  • 45) Blackwell, B. A., Miller, J. D., and Greenhalgh, R., 13C NMR study of the biosynthesis of toxins by Fusarium graminearum. J. Biol. Chem., 260, 4243–4247 (1985).
  • 46) Zamir, L. O., Gauthier, M. J., Devor, K. A., Nadeau, Y., and Sauriol, F., Trichodiene is a precursor to trichothecenes. J. Chem. Soc., Chem. Commun., 598–600 (1989).
  • 47) Savard, M. E., Blackwell, B. A., and Greenhalgh, R., The role of 13C-labeled trichodiene and bazzanene in the secondary metabolism of Fusarium culmorum. J. Nat. Prod., 52, 1267–1278 (1989).
  • 48) Desjardins, A. E., Plattner, R. D., and Vanmiddlesworth, F., Trichothecene biosynthesis in Fusarium sporotrichioides: origin of the oxygen atoms of T-2 toxin. Appl. Environ. Microbiol., 51, 493–497 (1986).
  • 49) Desjardins, A. E., Plattner, R. D., and Beremand, M. N., Ancymidol blocks trichothecene biosynthesis and leads to accumulation of trichodiene in Fusarium sporotrichioides and Gibberella pulicaris. Appl. Environ. Microbiol., 53, 1860–1865 (1987).
  • 50) Desjardins, A. E., Plattner, R. D., and Spencer, G. F., Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochemistry, 27, 767–771 (1988).
  • 51) Corley, D. G., Rottinghaus, G. E., and Tempesta, M. S., Toxic trichothecenes from Fusarium sporotrichioides (Mc-72083). J. Org. Chem., 52, 4405–4408 (1987).
  • 52) Nozoe, S., and Machida, Y., The structures of trichodiol and trichodiene. Tetrahedron, 28, 5105–5111 (1972).
  • 53) Beremand, M. N., Isolation and characterization of mutants blocked in T-2 toxin biosynthesis. Appl. Environ. Microbiol., 53, 1855–1859 (1987).
  • 54) McCormick, S. P., Taylor, S. L., Plattner, R. D., and Beremand, M. N., New modified trichothecenes accumulated in solid culture by mutant strains of Fusarium sporotrichioides. Appl. Environ. Microbiol., 55, 2195–2199 (1989).
  • 55) McCormick, S. P., Taylor, S. L., Plattner, R. D., and Beremand, M. N., Bioconversion of possible T-2 toxin precursors by a mutant strain of Fusarium sporotrichioides NRRL 3299. Appl. Environ. Microbiol., 56, 702–706 (1990).
  • 56) Hesketh, A. R., Gledhill, L., Marsh, D. C., Bycroft, B. W., Dewick, P. M., and Gilbert, J., Isotrichodiol: a post-trichodiene intermediate in the biosynthesis of trichothecene mycotoxins. J. Chem. Soc., Chem. Commun., 1184–1186 (1990).
  • 57) Zamir, L. O., Devor, K. A., Morin, N., and Sauriol, F., Biosynthesis of trichothecenes: oxygenation steps post-trichodiene. J. Chem. Soc., Chem. Commun., 1033–1034 (1991).
  • 58) Gledhill, L., Hesketh, A. R., Bycroft, B. W., Dewick, P. M., and Gilbert, J., Biosynthesis of trichothecene mycotoxins: cell-free epoxidation of a trichodiene derivative. FEMS Microbiol. Lett., 65, 241–245 (1991).
  • 59) Hesketh, A. R., Gledhill, L., Bycroft, B. W., Dewick, P. M., and Gilbert, J., Potential inhibitors of trichothecene biosynthesis in Fusarium culmorum: epoxidation of a trichodiene derivative. Phytochemistry, 32, 93–104 (1993).
  • 60) Hesketh, A. R., Bycroft, B. W., Dewick, P. M., and Gilbert, J., Revision of the stereochemistry in trichodiol, trichotriol and related compounds, and concerning their role in the biosynthesis of trichothecene mycotoxins. Phytochemistry, 32, 105–116 (1993).
  • 61) Zamir, L. O., Nikolakakis, A., Huang, L., St-Pierre, P., Sauriol, F., Sparace, S., and Mamer, O., Biosynthesis of 3-acetyldeoxynivalenol and sambucinol. Identification of the two oxygenation steps after trichodiene. J. Biol. Chem., 274, 12269–12277 (1999).
  • 62) Greenhalgh, R., Levandier, D., Adams, W., Miller, J. D., Blackwell, B. A., Mcalees, A. J., and Taylor, A., Production and characterization of deoxynivalenol and other secondary metabolites of Fusarium culmorum (CMI 14764, HIX 1503). J. Agric. Food Chem., 34, 98–102 (1986).
  • 63) Zamir, L. O., Devor, K. A., Nikolakakis, A., and Sauriol, F., Biosynthesis of Fusarium culmorum trichothecenes. The roles of isotrichodermin and 12,13-epoxytrichothec-9-ene. J. Biol. Chem., 265, 6713–6725 (1990).
  • 64) Greenhalgh, R., Meier, R. M., Blackwell, B. A., Miller, J. D., Taylor, A., and ApSimon, J. W., Minor metabolites of Fusarium roseum (ATCC 28114). J. Agric. Food Chem., 32, 1261–1264 (1984).
  • 65) Greenhalgh, R., Meier, R. M., Blackwell, B. A., Miller, J. D., Taylor, A., and ApSimon, J. W., Minor Metabolites of Fusarium roseum (ATCC 28114). 2. J. Agric. Food Chem., 34, 115–118 (1986).
  • 66) Lauren, D. R., Ashley, A., Blackwell, B. A., Greenhalgh, R., Miller, J. D., and Neish, G. A., Trichothecenes produced by Fusarium crookwellense DAOM 193611. J. Agric. Food Chem., 35, 884–889 (1987).
  • 67) Zamir, L. O., Devor, K. A., and Sauriol, F., Biosynthesis of the trichothecene 3-acetyldeoxynivalenol. Identification of the oxygenation steps after isotrichodermin. J. Biol. Chem., 266, 14992–15000 (1991).
  • 68) Hesketh, A. R., Gledhill, L., Marsh, D. C., Bycroft, B. W., Dewick, P. M., and Gilbert, J., Biosynthesis of trichothecene mycotoxins: identification of isotrichodiol as a post-trichodiene intermediate. Phytochemistry, 30, 2237–2243 (1991).
  • 69) Kimura, M., Kaneko, I., Komiyama, M., Takatsuki, A., Koshino, H., Yoneyama, K., and Yamaguchi, I., Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J. Biol. Chem., 273, 1654–1661 (1998).
  • 70) McCormick, S. P., Alexander, N. J., Trapp, S. E., and Hohn, T. M., Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl. Environ. Microbiol., 65, 5252–5256 (1999).
  • 71) Zamir, L. O., Nikolakakis, A., Devor, K. A., and Sauriol, F., Biosynthesis of the trichothecene 3-acetyldeoxynivalenol. Is isotrichodermin a biosynthetic precursor? J. Biol. Chem., 271, 27353–27359 (1996).
  • 72) Hohn, T. M., and Vanmiddlesworth, F., Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch. Biochem. Biophys., 251, 756–761 (1986).
  • 73) Hohn, T. M., and Beremand, P. D., Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene, 79, 131–138 (1989).
  • 74) Hohn, T. M., McCormick, S. P., and Desjardins, A. E., Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr. Genet., 24, 291–295 (1993).
  • 75) Brown, D. W., Dyer, R. B., McCormick, S. P., Kendra, D. F., and Plattner, R. D., Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet. Biol., 41, 454–462 (2004).
  • 76) Kimura, M., Tokai, T., O’Donnell, K., Ward, T. J., Fujimura, M., Hamamoto, H., Shibata, T., and Yamaguchi, I., The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett., 539, 105–110 (2003).
  • 77) O’Donnell, K., Kistler, H. C., Tacke, B. K., and Casper, H. H., Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA, 97, 7905–7910 (2000).
  • 78) Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E., and O’Donnell, K., Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA, 99, 9278–9283 (2002).
  • 79) Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., and Desjardins, A. E., A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet. Biol., 32, 121–133 (2001).
  • 80) Dyer, R. B., Plattner, R. D., Kendra, D. F., and Brown, D. W., Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J. Agric. Food Chem., 53, 9281–9287 (2005).
  • 81) Hohn, T. M., Desjardins, A. E., and McCormick, S. P., The Tri4 gene of Fusarium sporotrichioides encodes a cytochrome P450 monooxygenase involved in trichothecene biosynthesis. Mol. Gen. Genet., 248, 95–102 (1995).
  • 82) Tokai, T., Koshino, H., Kawasaki, T., Igawa, T., Suzuki, Y., Sato, M., Fujimura, M., Eizuka, T., Watanabe, H., Kitahara, T., Ohta, K., Shibata, T., Kudo, T., Inoue, H., Yamaguchi, I., and Kimura, M., Screening of putative oxygenase genes in the Fusarium graminearum genome sequence database for their role in trichothecene biosynthesis. FEMS Microbiol. Lett., 251, 193–201 (2005).
  • 83) McCormick, S. P., Alexander, N. J., and Proctor, R. H., Fusarium Tri4 encodes a multifunctional oxygenase required for trichothecene biosynthesis. Can. J. Microbiol., 52, 636–642 (2006).
  • 84) Tokai, T., Koshino, H., Takahashi-Ando, N., Sato, M., Fujimura, M., and Kimura, M., Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem. Biophys. Res. Commun., 353, 412–417 (2007).
  • 85) Proctor, R. H., Hohn, T. M., McCormick, S. P., and Desjardins, A. E., Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl. Environ. Microbiol., 61, 1923–1930 (1995).
  • 86) Hohn, T. M., Krishna, R., and Proctor, R. H., Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet. Biol., 26, 224–235 (1999).
  • 87) McCormick, S. P., Hohn, T. M., and Desjardins, A. E., Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Appl. Environ. Microbiol., 62, 353–359 (1996).
  • 88) Alexander, N. J., McCormick, S. P., and Hohn, T. M., The identification of the Saccharomyces cerevisiae gene AYT1(ORF-YLL063c) encoding an acetyltransferase. Yeast, 19, 1425–1430 (2002).
  • 89) Alexander, N. J., Hohn, T. M., and McCormick, S. P., The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl. Environ. Microbiol., 64, 221–225 (1998).
  • 90) McCormick, S. P., and Hohn, T. M., Accumulation of trichothecenes in liquid cultures of a Fusarium sporotrichioides mutant lacking a functional trichothecene C-15 hydroxylase. Appl. Environ. Microbiol., 63, 1685–1688 (1997).
  • 91) Alexander, N. J., McCormick, S. P., and Hohn, T. M., TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol. Gen. Genet., 261, 977–984 (1999).
  • 92) Pitkin, J. W., Panaccione, D. G., and Walton, J. D., A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology, 142, 1557–1565 (1996).
  • 93) Wuchiyama, J., Kimura, M., and Yamaguchi, I., A trichothecene efflux pump encoded by Tri102 in the biosynthesis gene cluster of Fusarium graminearum. J. Antibiotics, 53, 196–200 (2000).
  • 94) Lee, T., Han, Y. K., Kim, K. H., Yun, S. H., and Lee, Y. W., Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol., 68, 2148–2154 (2002).
  • 95) Tag, A. G., Garifullina, G. F., Peplow, A. W., Ake, C., Jr., Phillips, T. D., Hohn, T. M., and Beremand, M. N., A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl. Environ. Microbiol., 67, 5294–5302 (2001).
  • 96) Peplow, A. W., Tag, A. G., Garifullina, G. F., and Beremand, M. N., Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl. Environ. Microbiol., 69, 2731–2736 (2003).
  • 97) Chen, L., McCormick, S. P., and Hohn, T. M., Altered regulation of 15-acetyldeoxynivalenol production in Fusariium graminearum. Appl. Environ. Microbiol., 66, 2062–2065 (2000).
  • 98) Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., and Desjardins, A. E., Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet. Biol., 36, 224–233 (2002).
  • 99) McCormick, S. P., and Alexander, N. J., Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl. Environ. Microbiol., 68, 2959–2964 (2002).
  • 100) Kimura, M., Matsumoto, G., Shingu, Y., Yoneyama, K., and Yamaguchi, I., The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett., 435, 163–168 (1998).
  • 101) Meek, I. B., Peplow, A. W., Ake, C., Jr., Phillips, T. D., and Beremand, M. N., Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl. Environ. Microbiol., 69, 1607–1613 (2003).
  • 102) Alexander, N. J., McCormick, S. P., Larson, T. M., and Jurgenson, J. E., Expression of Tri15 in Fusarium sporotrichioides. Curr. Genet., 45, 157–162 (2004).
  • 103) Kimura, M., Shingu, Y., Yoneyama, K., and Yamaguchi, I., Features of Tri101, the trichothecene 3-O-acetyltransferase gene, related to the self-defense mechanism in Fusarium graminearum. Biosci. Biotechnol. Biochem., 62, 1033–1036 (1998).
  • 104) McCormick, S. P., Harris, L. J., Alexander, N. J., Ouellet, T., Saparno, A., Allard, S., and Desjardins, A. E., Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl. Environ. Microbiol., 70, 2044–2051 (2004).
  • 105) McCormick, S. P., Alexander, N. J., and Proctor, R. H., Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Can. J. Microbiol., 52, 220–226 (2006).
  • 106) Peplow, A. W., Meek, I. B., Wiles, M. C., Phillips, T. D., and Beremand, M. N., Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl. Environ. Microbiol., 69, 5935–5940 (2003).
  • 107) Brown, D. W., Proctor, R. H., Dyer, R. B., and Plattner, R. D., Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J. Agric. Food Chem., 51, 7936–7944 (2003).
  • 108) Walton, J. D., Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet. Biol., 30, 167–171 (2000).
  • 109) Yang, G., Rose, M. S., Turgeon, B. G., and Yoder, O. C., A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell, 8, 2139–2150 (1996).
  • 110) Ahn, J. H., and Walton, J. D., Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochliobolus carbonum. Plant Cell, 8, 887–897 (1996).
  • 111) Tanaka, A., Shiotani, H., Yamamoto, M., and Tsuge, T., Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol. Plant Microbe Interact., 12, 691–702 (1999).
  • 112) Rosewich, U. L., and Kistler, H. C., Role of horizontal gene transfer in the evolution of fungi. Annu. Rev. Phytopathol., 38, 325–363 (2000).
  • 113) Kimura, M., Anzai, H., and Yamaguchi, I., Microbial toxins in plant-pathogen interactions: biosynthesis, resistance mechanisms, and significance. J. Gen. Appl. Microbiol., 47, 149–160 (2001).
  • 114) Kimura, M., Tokai, T., Matsumoto, G., Fujimura, M., Hamamoto, H., Yoneyama, K., Shibata, T., and Yamaguchi, I., Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes. Genetics, 163, 677–684 (2003).
  • 115) Tokai, T., Fujimura, M., Inoue, H., Aoki, T., Ohta, K., Shibata, T., Yamaguchi, I., and Kimura, M., Concordant evolution of trichothecene 3-O-acetyltransferase and an rDNA species phylogeny of trichothecene-producing and non-producing fusaria and other ascomycetous fungi. Microbiology, 151, 509–519 (2005).
  • 116) Yoshizawa, T., and Morooka, N., Biological modification of trichothecene mycotoxins: acetylation and deacetylation of deoxynivalenols by Fusarium spp. Appl. Microbiol., 29, 54–58 (1975).
  • 117) Yoshizawa, T., and Morooka, N., Comparative studies on microbial and chemical modifications of trichothecene mycotoxins. Appl. Microbiol., 30, 38–43 (1975).
  • 118) Yoshizawa, T., Onomoto, C., and Morooka, N., Microbial acetyl conjugation of T-2 toxin and its derivatives. Appl. Environ. Microbiol., 39, 962–966 (1980).
  • 119) Kimura, Y., Nakamori, S., and Takagi, H., Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast, 19, 1437–1445 (2002).
  • 120) Kimura, M., Kamakura, T., Tao, Q. Z., Kaneko, I., and Yamaguchi, I., Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. Mol. Gen. Genet., 242, 121–129 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.